Radiolysis generates a complex organosynthetic chemical network

Zachary R. Adam, Albert C. Fahrenbach, Sofia M. Jacobson, Betul Kacar, Dmitry Yu Zubarev

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The architectural features of cellular life and its ecologies at larger scales are built upon foundational networks of reactions between molecules that avoid a collapse to equilibrium. The search for life’s origins is, in some respects, a search for biotic network attributes in abiotic chemical systems. Radiation chemistry has long been employed to model prebiotic reaction networks, and here we report network-level analyses carried out on a compiled database of radiolysis reactions, acquired by the scientific community over decades of research. The resulting network shows robust connections between abundant geochemical reservoirs and the production of carboxylic acids, amino acids, and ribonucleotide precursors—the chemistry of which is predominantly dependent on radicals. Moreover, the network exhibits the following measurable attributes associated with biological systems: (1) the species connectivity histogram exhibits a heterogeneous (heavy-tailed) distribution, (2) overlapping families of closed-loop cycles, and (3) a hierarchical arrangement of chemical species with a bottom-heavy energy-size spectrum. The latter attribute is implicated with stability and entropy production in complex systems, notably in ecology where it is known as a trophic pyramid. Radiolysis is implicated as a driver of abiotic chemical organization and could provide insights about the complex and perhaps radical-dependent mechanisms associated with life’s origins.

Original languageEnglish (US)
Article number1743
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Radiolysis generates a complex organosynthetic chemical network'. Together they form a unique fingerprint.

Cite this