Quantum Ranging with Gaussian Entanglement

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

It is well known that entanglement can benefit quantum information processing tasks. Quantum illumination, when first proposed, was surprising as the entanglement's benefit survived entanglement-breaking noise. Since then, many efforts have been devoted to study quantum sensing in noisy scenarios. The applicability of such schemes, however, is limited to a binary quantum hypothesis testing scenario. In terms of target detection, such schemes interrogate a single spatiotemporal resolution bin at a time, limiting the impact to radar detection. We resolve this binary-hypothesis limitation by proposing an entanglement-assisted quantum ranging protocol. By formulating a ranging task as a multiary hypothesis testing problem, we show that entanglement enables a 6-dB advantage in the error exponent against the optimal classical scheme. Moreover, the proposed ranging protocol can also be used to implement a pulse-position modulated entanglement-assisted communication protocol. Our ranging protocol reveals entanglement's potential in general quantum hypothesis testing tasks and paves the way toward a quantum-ranging radar with a provable quantum advantage.

Original languageEnglish (US)
Article number240501
JournalPhysical review letters
Volume126
Issue number24
DOIs
StatePublished - Jun 18 2021
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Quantum Ranging with Gaussian Entanglement'. Together they form a unique fingerprint.

Cite this