TY - JOUR
T1 - Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase
AU - Bandarian, V.
AU - Matthews, R. G.
PY - 2001/4/24
Y1 - 2001/4/24
N2 - Cobalamin-dependent methionine synthase (MetH) catalyzes the methylation of homocysteine using methyltetrahydrofolate as the methyl donor. The cobalamin cofactor serves as an intermediate carrier of the methyl group from methyltetrahydrofolate to homocysteine. In the two half-reactions that comprise turnover for MetH, the cobalamin is alternatively methylated by methyltetrahydrofolate and demethylated by homocysteine to form methionine. Upon binding to the protein, the usual dimethylbenzimidazole ligand is replaced by the imidazole side chain of His759 [Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Ludwig, M. L. (1994) Science 266, 1669-1674]. Despite the ligand replacement that accompanies binding of cobalamin to the holo-MetH protein, a MetH(2-649) fragment of methionine synthase that contains the regions that bind homocysteine and methyltetrahydrofolate utilizes exogenously supplied cobalamin in methyl transfer reactions akin to those of the catalytic cycle. However, the interactions of MetH(2-649) with endogenous cobalamin are first order in cobalamin, while the half-reactions catalyzed by the holoenzyme are zero order in cobalamin, so rate constants for reactions of bound and exogenous cobalamins cannot be compared, In this paper, we investigate the catalytic rate enhancements generated by binding cobalamin to MetH after dividing the protein in half and reacting MetH(2-649) with a second fragment, MetH(649-1227), that harbors the cobalamin cofactor. The second-order rate constant for demethylation of methylcobalamin by Hcy is elevated 60-fold and that for methylation of cob(I)alamin is elevated 120-fold, Thus, binding of cobalamin to MetH is essential for efficient catalysis.
AB - Cobalamin-dependent methionine synthase (MetH) catalyzes the methylation of homocysteine using methyltetrahydrofolate as the methyl donor. The cobalamin cofactor serves as an intermediate carrier of the methyl group from methyltetrahydrofolate to homocysteine. In the two half-reactions that comprise turnover for MetH, the cobalamin is alternatively methylated by methyltetrahydrofolate and demethylated by homocysteine to form methionine. Upon binding to the protein, the usual dimethylbenzimidazole ligand is replaced by the imidazole side chain of His759 [Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Ludwig, M. L. (1994) Science 266, 1669-1674]. Despite the ligand replacement that accompanies binding of cobalamin to the holo-MetH protein, a MetH(2-649) fragment of methionine synthase that contains the regions that bind homocysteine and methyltetrahydrofolate utilizes exogenously supplied cobalamin in methyl transfer reactions akin to those of the catalytic cycle. However, the interactions of MetH(2-649) with endogenous cobalamin are first order in cobalamin, while the half-reactions catalyzed by the holoenzyme are zero order in cobalamin, so rate constants for reactions of bound and exogenous cobalamins cannot be compared, In this paper, we investigate the catalytic rate enhancements generated by binding cobalamin to MetH after dividing the protein in half and reacting MetH(2-649) with a second fragment, MetH(649-1227), that harbors the cobalamin cofactor. The second-order rate constant for demethylation of methylcobalamin by Hcy is elevated 60-fold and that for methylation of cob(I)alamin is elevated 120-fold, Thus, binding of cobalamin to MetH is essential for efficient catalysis.
UR - http://www.scopus.com/inward/record.url?scp=0035942336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035942336&partnerID=8YFLogxK
U2 - 10.1021/bi002801k
DO - 10.1021/bi002801k
M3 - Article
C2 - 11305922
AN - SCOPUS:0035942336
SN - 0006-2960
VL - 40
SP - 5056
EP - 5064
JO - Biochemistry
JF - Biochemistry
IS - 16
ER -