TY - JOUR
T1 - Quantifying the impacts of land use change on flooding in data-poor watersheds in El Salvador with community-based model calibration
AU - Tellman, Beth
AU - Saiers, James Edward
AU - Cruz, Oscar Antonio Ruiz
N1 - Funding Information:
This study was made possible by grants from the Tropical Resources Institute at Yale, Travel Grant for Latin America and Iberian Studies, Yale Institute for Biospheric Research, and the National Science Foundation. Field work was made possible and enjoyable by Oscar Ruiz, Coordinator of Water Resources for ACUA (United Community Association for Agriculture and Water), Zulma Hernandez, community coordinator for South La Libertad for CRIPDES (Association for Development El Salvador) and field assistants Manuelito, Rene Landaverde, and the community leaders and policemen who accompanied and ensured the safety of all field visits. The manuscript was greatly improved thanks to two anonymous reviewers.
Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Urbanization can decrease the flood mitigation capacity of a catchment, and these impacts can be measured with hydrologic modeling. Models are typically calibrated against observed discharge and satellite data, but in a developing country context like El Salvador, these data are often unavailable. Even if a model is well calibrated and tested, its ability to influence land use plans requires additional stakeholder engagement. This study uses a participatory modeling approach to calibrate a watershed model and estimate flood impacts of land use scenarios in two urbanizing catchments in El Salvador with a linked land use–catchment hydrology–hydraulic model calibrated on flood height observed by community members. This paper explores both the value of household flood observation in model calibration and differences of flood extent estimates for land use scenarios with an uncalibrated versus community-calibrated model. We find that calibration using household surveys improves model performance. Results of scenario modeling suggest that while past urbanization has significantly increased household flood exposure in one catchment, future land use scenarios that further urbanize or reforest large areas of either catchment have little effect on the number of houses at risk for flooding. The success of the participatory methodology to increase model accuracy and link results to local land use planning makes clear the contribution of social science to traditional hydrological methods to understand land use–flood links in data-poor catchments.
AB - Urbanization can decrease the flood mitigation capacity of a catchment, and these impacts can be measured with hydrologic modeling. Models are typically calibrated against observed discharge and satellite data, but in a developing country context like El Salvador, these data are often unavailable. Even if a model is well calibrated and tested, its ability to influence land use plans requires additional stakeholder engagement. This study uses a participatory modeling approach to calibrate a watershed model and estimate flood impacts of land use scenarios in two urbanizing catchments in El Salvador with a linked land use–catchment hydrology–hydraulic model calibrated on flood height observed by community members. This paper explores both the value of household flood observation in model calibration and differences of flood extent estimates for land use scenarios with an uncalibrated versus community-calibrated model. We find that calibration using household surveys improves model performance. Results of scenario modeling suggest that while past urbanization has significantly increased household flood exposure in one catchment, future land use scenarios that further urbanize or reforest large areas of either catchment have little effect on the number of houses at risk for flooding. The success of the participatory methodology to increase model accuracy and link results to local land use planning makes clear the contribution of social science to traditional hydrological methods to understand land use–flood links in data-poor catchments.
KW - El Salvador
KW - Flooding
KW - Land use change
KW - Model calibration
KW - Participatory modeling
UR - http://www.scopus.com/inward/record.url?scp=84938632130&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938632130&partnerID=8YFLogxK
U2 - 10.1007/s10113-015-0841-y
DO - 10.1007/s10113-015-0841-y
M3 - Article
AN - SCOPUS:84938632130
SN - 1436-3798
VL - 16
SP - 1183
EP - 1196
JO - Regional Environmental Change
JF - Regional Environmental Change
IS - 4
ER -