TY - JOUR
T1 - Quantifying leaf symptoms of sorghum charcoal rot in images of field-grown plants using deep neural networks
AU - Gonzalez, Emmanuel M.
AU - Zarei, Ariyan
AU - Calleja, Sebastian
AU - Christenson, Clay
AU - Rozzi, Bruno
AU - Demieville, Jeffrey
AU - Hu, Jiahuai
AU - Eveland, Andrea L.
AU - Dilkes, Brian
AU - Barnard, Kobus
AU - Lyons, Eric
AU - Pauli, Duke
N1 - Publisher Copyright:
© 2024 The Author(s). The Plant Phenome Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy and Crop Science Society of America.
PY - 2024/12
Y1 - 2024/12
N2 - Charcoal rot of sorghum (CRS) is a significant disease affecting sorghum crops, with limited genetic resistance available. The causative agent, Macrophomina phaseolina (Tassi) Goid, is a highly destructive fungal pathogen that targets over 500 plant species globally, including essential staple crops. Utilizing field image data for precise detection and quantification of CRS could greatly assist in the prompt identification and management of affected fields and thereby reduce yield losses. The objective of this work was to implement various machine learning algorithms to evaluate their ability to accurately detect and quantify CRS in red-green-blue images of sorghum plants exhibiting symptoms of infection. EfficientNet-B3 and a fully convolutional network emerged as the top-performing models for image classification and segmentation tasks, respectively. Among the classification models evaluated, EfficientNet-B3 demonstrated superior performance, achieving an accuracy of 86.97%, a recall rate of 0.71, and an F1 score of 0.73. Of the segmentation models tested, FCN proved to be the most effective, exhibiting a validation accuracy of 97.76%, a recall rate of 0.68, and an F1 score of 0.66. As the size of the image patches increased, both models’ validation scores increased linearly, and their inference time decreased exponentially. This trend could be attributed to larger patches containing more information, improving model performance, and fewer patches reducing the computational load, thus decreasing inference time. The models, in addition to being immediately useful for breeders and growers of sorghum, advance the domain of automated plant phenotyping and may serve as a foundation for drone-based or other automated field phenotyping efforts. Additionally, the models presented herein can be accessed through a web-based application where users can easily analyze their own images.
AB - Charcoal rot of sorghum (CRS) is a significant disease affecting sorghum crops, with limited genetic resistance available. The causative agent, Macrophomina phaseolina (Tassi) Goid, is a highly destructive fungal pathogen that targets over 500 plant species globally, including essential staple crops. Utilizing field image data for precise detection and quantification of CRS could greatly assist in the prompt identification and management of affected fields and thereby reduce yield losses. The objective of this work was to implement various machine learning algorithms to evaluate their ability to accurately detect and quantify CRS in red-green-blue images of sorghum plants exhibiting symptoms of infection. EfficientNet-B3 and a fully convolutional network emerged as the top-performing models for image classification and segmentation tasks, respectively. Among the classification models evaluated, EfficientNet-B3 demonstrated superior performance, achieving an accuracy of 86.97%, a recall rate of 0.71, and an F1 score of 0.73. Of the segmentation models tested, FCN proved to be the most effective, exhibiting a validation accuracy of 97.76%, a recall rate of 0.68, and an F1 score of 0.66. As the size of the image patches increased, both models’ validation scores increased linearly, and their inference time decreased exponentially. This trend could be attributed to larger patches containing more information, improving model performance, and fewer patches reducing the computational load, thus decreasing inference time. The models, in addition to being immediately useful for breeders and growers of sorghum, advance the domain of automated plant phenotyping and may serve as a foundation for drone-based or other automated field phenotyping efforts. Additionally, the models presented herein can be accessed through a web-based application where users can easily analyze their own images.
UR - http://www.scopus.com/inward/record.url?scp=85197390771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85197390771&partnerID=8YFLogxK
U2 - 10.1002/ppj2.20110
DO - 10.1002/ppj2.20110
M3 - Article
AN - SCOPUS:85197390771
SN - 2578-2703
VL - 7
JO - Plant Phenome Journal
JF - Plant Phenome Journal
IS - 1
M1 - e20110
ER -