QCD phase transition studied by means of hadron production

Jan Rafelski, M. Petran

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


We address the hadronization process of a QGP fireball formed in relativistic heavy-ion collisions in the entire range of past and present heavy ion collision reaction energies. A precise method of analysis of hadron multiplicities has evolved into the “SHARE with CHARM” statistical hadronization model. Using this tool we describe successfully—over many orders of magnitude—the yield of all hadrons produced in the full range of reaction energies and centralities; exceptions are peripheral and more central collisions at low energies. The properties of the fireball final state can be understood by considering all primary hadronic particles. The dense hadron fireball created at SPS, RHIC, and LHC shows the final state differentiated solely by: i) volume changes; and ii) strangeness, (charm) flavor content. A universal hadronization pressure P = 80 ± 3 MeV/fm3 is found. The strangeness content of a large fireball as compared to entropy shows the presence of quark-gluon plasma degrees of freedom near the chemical QGP equilibrium. The 'Universal Hadronization’ condition common to SPS, RHIC, and LHC agrees with the proposed direct QGP fireball evaporation into free-streaming hadrons. Looking forward we discuss qualitatively how heavy flavor production contributes to energy stopping in the central rapidity region as function of reaction energy: the cases of LHC at full energy and future super-LHC.

Original languageEnglish (US)
Pages (from-to)748-755
Number of pages8
JournalPhysics of Particles and Nuclei
Issue number5
StatePublished - Sep 8 2015

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'QCD phase transition studied by means of hadron production'. Together they form a unique fingerprint.

Cite this