PyTorch and CEDR: Enabling Deployment of Machine Learning Models on Heterogeneous Computing Systems

H. Umut Suluhan, Serhan Gener, Alexander Fusco, H. Fatih Ugurdag, Ali Akoglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The PyTorch programming interface enables efficient deployment of machine learning models, leveraging the parallelism offered by GPU architectures. In this study, we present the integration of the PyTorch framework with a compiler and runtime ecosystem. Our aim is to demonstrate the ability to deploy PyTorch-based models on FPGA-based SoC platforms, without requiring users to possess prior FPGA-based design experience. The proposed PyTorch model transformation approach expands the range of hardware architectures that PyTorch developers can target, enabling them to take advantage of the energy-efficient execution provided by heterogeneous computing systems. Our experiments involve compiling and executing real-life applications on heterogeneous SoC configurations emulated on the Xilinx Zynq Ultrascale+ ZCU102 system. We showcase our ability to deploy three distinct PyTorch applications, encompassing object detection, visual geometry group (VGG), and speech classification, using the integrated compiler and runtime system without loss of model accuracy. Furthermore, we extend our analysis by evaluating dynamically arriving workload scenarios, consisting of a mix of PyTorch models and non-PyTorch-based applications. Through these experiments, we vary the hardware composition and scheduling heuristics. Our findings indicate that when PyTorch-based applications coexist with unrelated applications, our integrated scheduler fairly dispatches tasks to the FPGA platform's accelerator and CPU cores, without compromising the target throughput for each application.

Original languageEnglish (US)
Title of host publication2023 20th ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2023 - Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9798350319439
DOIs
StatePublished - 2023
Externally publishedYes
Event20th ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2023 - Giza, Egypt
Duration: Dec 4 2023Dec 7 2023

Publication series

NameProceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA
ISSN (Print)2161-5322
ISSN (Electronic)2161-5330

Conference

Conference20th ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2023
Country/TerritoryEgypt
CityGiza
Period12/4/2312/7/23

Keywords

  • heterogeneous computing
  • PyTorch model
  • SoC

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Signal Processing
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'PyTorch and CEDR: Enabling Deployment of Machine Learning Models on Heterogeneous Computing Systems'. Together they form a unique fingerprint.

Cite this