TY - JOUR
T1 - Psorospermin structural requirements for P-glycoprotein resistance reversal
AU - Carey, Steven S.
AU - Gleason-Guzman, Mary
AU - Gokhale, Vijay
AU - Hurley, Laurence H.
PY - 2008/11/1
Y1 - 2008/11/1
N2 - Resistance to chemotherapy reduces its effectiveness, resulting in increased mortality. Psorospermin, a natural product, is a topoisomerase II-directed DNA alkylating agent active against multidrug-resistant (MDR) cell lines, including multiple myeloma. In this study, the mechanism of the P-glycoprotein (P-gp) modulation activity of psorospermin and that of its associated pharmacophore were examined. Flow cytometry shows that doxorubicin-resistant multiple myeloma cells (8226/D40) pretreated with psorospermin enhance intracellular retention of doxorubicin compared with control (75% versus 38%). Because the overexpression of P-gp is the primary cause of drug resistance in the 8226/D40 cells, psorospermin-induced sensitization was likely due to mdr1/P-gp expressional or functional inhibition. As shown by PCR and Western blot, neither transcription of mdr1 nor translation of P-gp was down-regulated by psorospermin treatment. Therefore, the mechanism of psorospermin-induced resistance reversal is most likely through a direct interaction between psorospermin and P-gp. Furthermore, because only the (2′R,3′R) isomer of psorospermin showed any resistance reversal activity, the side chain of psorospermin is apparently a crucial moiety for resistance reversal. By understanding the mechanism of psorospermin-induced MDR modulation, psorospermin and similar compounds can be combined with other chemotherapies to treat resistant cancers.
AB - Resistance to chemotherapy reduces its effectiveness, resulting in increased mortality. Psorospermin, a natural product, is a topoisomerase II-directed DNA alkylating agent active against multidrug-resistant (MDR) cell lines, including multiple myeloma. In this study, the mechanism of the P-glycoprotein (P-gp) modulation activity of psorospermin and that of its associated pharmacophore were examined. Flow cytometry shows that doxorubicin-resistant multiple myeloma cells (8226/D40) pretreated with psorospermin enhance intracellular retention of doxorubicin compared with control (75% versus 38%). Because the overexpression of P-gp is the primary cause of drug resistance in the 8226/D40 cells, psorospermin-induced sensitization was likely due to mdr1/P-gp expressional or functional inhibition. As shown by PCR and Western blot, neither transcription of mdr1 nor translation of P-gp was down-regulated by psorospermin treatment. Therefore, the mechanism of psorospermin-induced resistance reversal is most likely through a direct interaction between psorospermin and P-gp. Furthermore, because only the (2′R,3′R) isomer of psorospermin showed any resistance reversal activity, the side chain of psorospermin is apparently a crucial moiety for resistance reversal. By understanding the mechanism of psorospermin-induced MDR modulation, psorospermin and similar compounds can be combined with other chemotherapies to treat resistant cancers.
UR - http://www.scopus.com/inward/record.url?scp=56249091092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=56249091092&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-08-0519
DO - 10.1158/1535-7163.MCT-08-0519
M3 - Article
C2 - 19001443
AN - SCOPUS:56249091092
SN - 1535-7163
VL - 7
SP - 3617
EP - 3623
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 11
ER -