Prophylactic Application of Tailocins Prevents Infection by Pseudomonas syringae

David A. Baltrus, Meara Clark, Kevin L. Hockett, Madison Mollico, Caitlin Smith, Savannah Weaver

Research output: Contribution to journalArticlepeer-review

Abstract

Tailocins are phage-derived bacteriocins that demonstrate great potential as agricultural antimicrobials given their high killing efficiency and their precise strain-specific targeting ability. Our group has categorized and characterized tailocins produced by and tailocin sensitivities of the phytopathogen Pseudomonas syringae, and here we extend these experiments to test whether prophylactic tailocin application can prevent infection of Nicotiana benthamiana by P. syringae pv. syringae B728a. Specifically, we demonstrate that multiple strains can produce tailocins that prevent infection by strain B728a and engineer a deletion mutant to prove that tailocin targeting is responsible for this protective effect. Lastly, we provide evidence that heritable resistance mutations do not explain the minority of cases in which tailocins fail to prevent infection. Our results extend previous reports of prophylactic use of tailocins against phytopathogens, and establish a model system with which to test and optimize tailocin application for prophylactic treatment to prevent phytopathogen infection.

Original languageEnglish (US)
Pages (from-to)561-566
Number of pages6
JournalPhytopathology
Volume112
Issue number3
DOIs
StatePublished - Mar 2022

Keywords

  • bacterial pathogens
  • biological control
  • disease control
  • pest management

ASJC Scopus subject areas

  • Agronomy and Crop Science
  • Plant Science

Fingerprint

Dive into the research topics of 'Prophylactic Application of Tailocins Prevents Infection by Pseudomonas syringae'. Together they form a unique fingerprint.

Cite this