Abstract
The human and canine small intestine exhibit increased contractility when exposed to exogenous or endogenous opioid peptides. The response of the canine small intestine to the proenkephalin A-derived peptide, peptide E and related processing fragments [Met5]enkephalin, BAM-12P, BAM-18P and BAM-22P was investigated by administering each peptide to isolated, small intestine segments which causes a significant increase in intraluminal pressure. Concentration-response curves from intraarterial bolus administration of peptide E, [Met5]enkephalin, BAM-12P, BAM-18P and BAM-22P showed decreasing efficacy with decreasing amino acid chain length while naloxone (305 nM) significantly antagonized the response. Results using the classical guinea pig ileum/myenteric plexus longitudinal muscle and mouse vas deferens bioassays with specific opioid receptor antagonists provide evidence that peptide E and BAM-18P are relatively specific to the μ opioid receptor, [Met5]enkephalin is more δ specific, BAM-22P is both μ and κ specific and BAM-12P is κ opioid receptor specific. These studies demonstrate that locally released (and possibly circulating) peptide E and related processing fragments increase contractility in the small intestine and may be active through more than a single receptor mechanism, particularly the μ receptor.
Original language | English (US) |
---|---|
Pages (from-to) | 253-261 |
Number of pages | 9 |
Journal | European Journal of Pharmacology |
Volume | 191 |
Issue number | 3 |
DOIs | |
State | Published - Dec 4 1990 |
Keywords
- BAM-12P
- BAM-18P
- BAM-22P
- Peptide E
- [Met]enkephalin
ASJC Scopus subject areas
- Pharmacology