TY - JOUR
T1 - Procedural-memory, working-memory, and declarative-memory skills are each associated with dimensional integration in sound-category learning
AU - Quam, Carolyn
AU - Wang, Alisa
AU - Todd Maddox, W.
AU - Golisch, Kimberly
AU - Lotto, Andrew
N1 - Funding Information:
We extend sincere thanks to the undergraduate students who participated in this research. We are extremely grateful to Dr. LouAnn Gerken, who provided very generous support for this research (including the physical space in which to conduct it). As research assistants at Portland State University, Benjamin Carlstrom and Chelsea McGrath provided very helpful assistance with data analysis and manuscript preparation. We are grateful to many members of the Psychology and Speech, Language, and Hearing Sciences departments at the University of Arizona for advice, suggestions, and support, including Drs. Elena Plante and Rebecca Gómez and business-finance manager Becky Tsang. Several students contributed directly to the success of this project. Diana Perez, Karen Ayala-Miranda, Samantha Orwoll, Kailyn McFarlane, Kyli Chapman, and Jenna Adler recruited and tested participants. Alexis Cothrun coded declarative-memory data. Drs. Jessamyn Schertz and Andréa Davis (then-Ph.D. students) discussed theoretical and experimental-design ideas with the first author. We are also sincerely grateful for their contributions. Funding was provided by NIH-NIDCD award K99-R00 DC013795 to CQ and NIH-NIDCD award R01 DC004674 to AL.
Publisher Copyright:
© 2018 Quam, Wang, Maddox, Golisch and Lotto.
PY - 2018/10/2
Y1 - 2018/10/2
N2 - This paper investigates relationships between procedural-memory, declarative-memory, and working-memory skills and adult native English speakers' novel sound-category learning. Participants completed a sound-categorization task that required integrating two dimensions: one native (vowel quality), one non-native (pitch). Similar information-integration category structures in the visual and auditory domains have been shown to be best learned implicitly (e.g., Maddox et al., 2006). Thus, we predicted that individuals with greater procedural-memory capacity would better learn sound categories, because procedural memory appears to support implicit learning of new information and integration of dimensions. Seventy undergraduates were tested across two experiments. Procedural memory was assessed using a linguistic adaptation of the serial-reaction-time task (Misyak et al., 2010a,b). Declarative memory was assessed using the logical-memory subtest of the Wechsler Memory Scale-4th edition (WMS-IV; Wechsler, 2009). Working memory was assessed using an auditory version of the reading-span task (Kane et al., 2004). Experiment 1 revealed contributions of only declarative memory to dimensional integration, which might indicate not enough time or motivation to shift over to a procedural/integrative strategy. Experiment 2 gave twice the speech-sound training, distributed over 2 days, and also attempted to train at the category boundary. As predicted, effects of declarative memory were removed and effects of procedural memory emerged, but, unexpectedly, new effects of working memory surfaced. The results may be compatible with a multiple-systems account in which declarative and working memory facilitate transfer of control to the procedural system.
AB - This paper investigates relationships between procedural-memory, declarative-memory, and working-memory skills and adult native English speakers' novel sound-category learning. Participants completed a sound-categorization task that required integrating two dimensions: one native (vowel quality), one non-native (pitch). Similar information-integration category structures in the visual and auditory domains have been shown to be best learned implicitly (e.g., Maddox et al., 2006). Thus, we predicted that individuals with greater procedural-memory capacity would better learn sound categories, because procedural memory appears to support implicit learning of new information and integration of dimensions. Seventy undergraduates were tested across two experiments. Procedural memory was assessed using a linguistic adaptation of the serial-reaction-time task (Misyak et al., 2010a,b). Declarative memory was assessed using the logical-memory subtest of the Wechsler Memory Scale-4th edition (WMS-IV; Wechsler, 2009). Working memory was assessed using an auditory version of the reading-span task (Kane et al., 2004). Experiment 1 revealed contributions of only declarative memory to dimensional integration, which might indicate not enough time or motivation to shift over to a procedural/integrative strategy. Experiment 2 gave twice the speech-sound training, distributed over 2 days, and also attempted to train at the category boundary. As predicted, effects of declarative memory were removed and effects of procedural memory emerged, but, unexpectedly, new effects of working memory surfaced. The results may be compatible with a multiple-systems account in which declarative and working memory facilitate transfer of control to the procedural system.
KW - Cognition
KW - Individual differences
KW - Language acquisition
KW - Memory
KW - Speech-sound learning
UR - http://www.scopus.com/inward/record.url?scp=85054199745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054199745&partnerID=8YFLogxK
U2 - 10.3389/fpsyg.2018.01828
DO - 10.3389/fpsyg.2018.01828
M3 - Article
AN - SCOPUS:85054199745
SN - 1664-1078
VL - 9
JO - Frontiers in Psychology
JF - Frontiers in Psychology
IS - OCT
M1 - 1828
ER -