Abstract
We used extreme ultraviolet (XUV) transient absorption spectroscopy to study the autoionizing Rydberg states of oxygen in an electronically- and vibrationally-resolved fashion. XUV pulse initiates molecular polarization and near-infrared pulse perturbs its evolution. Transient absorption spectra show positive optical-density (OD) change in the case of nsσg and ndπg autoionizing states of oxygen and negative OD change for ndσg states. Multiconfiguration time-dependent Hartree-Fock (MCTDHF) calculations are used to simulate the transient absorption and the resulting spectra and temporal evolution agree with experimental observations. We model the effect of near-infrared perturbation on molecular polarization and find that the laser-induced phase-shift model agrees with the experimental and MCTDHF results, while the laser-induced attenuation model does not. We relate the electronic-state-symmetry-dependent sign of the OD change to the Fano parameters of the static absorption line shapes.
Original language | English (US) |
---|---|
Article number | 043427 |
Journal | Physical Review A |
Volume | 95 |
Issue number | 4 |
DOIs | |
State | Published - Apr 26 2017 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics