Abstract
The probabilistic Waring problem for finite simple groups asks whether every word of the form w1w2, where w1 and w2 are non-trivial words in disjoint sets of variables, induces almost uniform distributions on finite simple groups with respect to the L 1 norm. Our first main result provides a positive solution to this problem. We also provide a geometric characterization of words inducing almost uniform distributions on finite simple groups of Lie type of bounded rank, and study related random walks. Our second main result concerns the probabilistic L∞ Waring problem for finite simple groups. We show that for every l≥1, there exists (an explicit) N=N(l)=O(l4), such that if w1,...,wN are non-trivial words of length at most l in pairwise disjoint sets of variables, then their product w1...wN is almost uniform on finite simple groups with respect to the L∞ norm. The dependence of N on l is genuine. This result implies that, for every word w=w1...wN as above, the word map induced by w on a semisimple algebraic group over an arbitrary field is a flat morphism. Applications to representation varieties, subgroup growth, and random generation are also presented. In particular, we show that, for certain one-relator groups Γ, a random homomorphism from Γ to a finite simple group G is surjective with probability tending to 1 as |G|→∞.
Original language | English (US) |
---|---|
Pages (from-to) | 561-608 |
Number of pages | 48 |
Journal | Annals of Mathematics |
Volume | 190 |
Issue number | 2 |
DOIs | |
State | Published - 2019 |
Keywords
- Atmorphisms
- One-relator groups
- Random walks
- Simple groups
- Uniform distributions
- Waring problems
- Word maps
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty