TY - JOUR
T1 - Principles of electronic structure in transition metal complexes. Additive ligand electronic effects and core-valence ionization correlations for Mo(CO)6-n(PMe3)n where n=0, 1, 2, 3
AU - Lichtenberger, Dennis L.
AU - Kellogg, Glen Eugene
AU - Landis, George H.
PY - 1985
Y1 - 1985
N2 - Gas phase core photoelectron spectroscopic (XPS) results are reported for a series of trimethylphosphine substituted molybdenum carbonyls: Mo(CO) 6, Mo(CO)5(PMe3), cis-Mo(CO) 4(PMe3)2, trans-Mo(CO)4(PMe 3)2, and fac-Mo(CO)3(PMe3) 3. Core ligand additivity, defined as a constant shift in core ionizations with each successive step of ligand substitution, is indicated by these data. The shift per phosphine substitution is -0.65±0.10 eV for the molybdenum 3d5/2 ionization, -0.75±0.11 eV for the carbon (carbonyl) 1s ionization, and -0.78±0.09 eV for the oxygen 1s ionization. Comparison of core and valence data sets for these complexes illustrates a second principle, core-valence ionization correlation. The ratio of the Coulombic valence metal d level shifts to the core metal shifts is 0.74±0.06. This trend, in a system with extensively delocalized metal orbitals, shows that core and valence photoelectron spectroscopies are intimately related and that key additional understanding of electron distributions and bonding can be obtained from correlating the information of these techniques. Simple models for both the ligand additivity and core-valence ionization correlation principles are presented to demonstrate the fundamental features and possible limitations of these principles.
AB - Gas phase core photoelectron spectroscopic (XPS) results are reported for a series of trimethylphosphine substituted molybdenum carbonyls: Mo(CO) 6, Mo(CO)5(PMe3), cis-Mo(CO) 4(PMe3)2, trans-Mo(CO)4(PMe 3)2, and fac-Mo(CO)3(PMe3) 3. Core ligand additivity, defined as a constant shift in core ionizations with each successive step of ligand substitution, is indicated by these data. The shift per phosphine substitution is -0.65±0.10 eV for the molybdenum 3d5/2 ionization, -0.75±0.11 eV for the carbon (carbonyl) 1s ionization, and -0.78±0.09 eV for the oxygen 1s ionization. Comparison of core and valence data sets for these complexes illustrates a second principle, core-valence ionization correlation. The ratio of the Coulombic valence metal d level shifts to the core metal shifts is 0.74±0.06. This trend, in a system with extensively delocalized metal orbitals, shows that core and valence photoelectron spectroscopies are intimately related and that key additional understanding of electron distributions and bonding can be obtained from correlating the information of these techniques. Simple models for both the ligand additivity and core-valence ionization correlation principles are presented to demonstrate the fundamental features and possible limitations of these principles.
UR - http://www.scopus.com/inward/record.url?scp=0001014047&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001014047&partnerID=8YFLogxK
U2 - 10.1063/1.449226
DO - 10.1063/1.449226
M3 - Article
AN - SCOPUS:0001014047
SN - 0021-9606
VL - 83
SP - 2759
EP - 2768
JO - The Journal of chemical physics
JF - The Journal of chemical physics
IS - 6
ER -