Principle hessian direction based parameter reduction with process variation

Alex Mitev, Michael Marefat, Dongsheng Ma, Janet M. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

As CMOS technology enters the nanometer regime, the increasing process variation is bringing manifest impact on circuit performance. In this paper, we propose a Principle Hessian Direction (PHD) based parameter reduction approach. This new approach relies on the impact of each parameter on circuit performance to decide whether keeping or reducing the parameter. Compared with the existing principle component analysis (PCA) method, this performance based property provides us a significantly smaller set of parameters after reduction. The experimental results also support our conclusions. In all cases, an average of 53% of reduction is observed with less than 3% error in the mean value and less than 8% error in the variation.

Original languageEnglish (US)
Title of host publication2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
Pages632-637
Number of pages6
DOIs
StatePublished - 2007
Event2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD - San Jose, CA, United States
Duration: Nov 4 2007Nov 8 2007

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
ISSN (Print)1092-3152

Other

Other2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
Country/TerritoryUnited States
CitySan Jose, CA
Period11/4/0711/8/07

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Principle hessian direction based parameter reduction with process variation'. Together they form a unique fingerprint.

Cite this