TY - JOUR
T1 - Prenatal exposure to organophosphorus pesticides and childhood neurodevelopmental phenotypes
AU - Furlong, Melissa A.
AU - Herring, Amy
AU - Buckley, Jessie P.
AU - Goldman, Barbara D.
AU - Daniels, Julie L.
AU - Engel, Lawrence S.
AU - Wolff, Mary S.
AU - Chen, Jia
AU - Wetmur, Jim
AU - Barr, Dana Boyd
AU - Engel, Stephanie M.
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017
Y1 - 2017
N2 - Prenatal exposure to organophosphorus pesticides (OPs) has been associated with different neurodevelopmental outcomes across different cohorts. A phenotypic approach may address some of these differences by incorporating information across scales and accounting for the complex correlational structure of neurodevelopmental outcomes. Additionally, Bayesian hierarchical modeling can account for confounding by collinear co-exposures. We use this framework to examine associations between prenatal exposure to OPs and behavior, executive functioning, and IQ assessed at age 6–9 years in a cohort of 404 mother/infant pairs recruited during pregnancy. We derived phenotypes of neurodevelopment with a factor analysis, and estimated associations between OP metabolites and these phenotypes in Bayesian hierarchical models for exposure mixtures. We report seven factors: 1) Impulsivity and Externalizing, 2) Executive Functioning, 3) Internalizing, 4) Perceptual Reasoning, 5) Adaptability, 6) Processing Speed, and 7) Verbal Intelligence. These, along with the Working Memory Index, were standardized and scaled so that positive values reflected positive attributes and negative values represented adverse outcomes. Standardized dimethylphosphate metabolites were negatively associated with Internalizing factor scores (β^ − 0.13, 95% CI − 0.26, 0.00) but positively associated with Executive Functioning factor scores (β^ 0.18, 95% CI 0.04, 0.31). Standardized diethylphosphate metabolites were negatively associated with the Working Memory Index (β^ − 0.17, 95% CI − 0.33, − 0.03). Associations with factor scores were generally stronger and more precise than associations with individual instrument-specific items. Factor analysis of outcomes may provide some advantages in etiological studies of childhood neurodevelopment by incorporating information across scales to reduce dimensionality and improve precision.
AB - Prenatal exposure to organophosphorus pesticides (OPs) has been associated with different neurodevelopmental outcomes across different cohorts. A phenotypic approach may address some of these differences by incorporating information across scales and accounting for the complex correlational structure of neurodevelopmental outcomes. Additionally, Bayesian hierarchical modeling can account for confounding by collinear co-exposures. We use this framework to examine associations between prenatal exposure to OPs and behavior, executive functioning, and IQ assessed at age 6–9 years in a cohort of 404 mother/infant pairs recruited during pregnancy. We derived phenotypes of neurodevelopment with a factor analysis, and estimated associations between OP metabolites and these phenotypes in Bayesian hierarchical models for exposure mixtures. We report seven factors: 1) Impulsivity and Externalizing, 2) Executive Functioning, 3) Internalizing, 4) Perceptual Reasoning, 5) Adaptability, 6) Processing Speed, and 7) Verbal Intelligence. These, along with the Working Memory Index, were standardized and scaled so that positive values reflected positive attributes and negative values represented adverse outcomes. Standardized dimethylphosphate metabolites were negatively associated with Internalizing factor scores (β^ − 0.13, 95% CI − 0.26, 0.00) but positively associated with Executive Functioning factor scores (β^ 0.18, 95% CI 0.04, 0.31). Standardized diethylphosphate metabolites were negatively associated with the Working Memory Index (β^ − 0.17, 95% CI − 0.33, − 0.03). Associations with factor scores were generally stronger and more precise than associations with individual instrument-specific items. Factor analysis of outcomes may provide some advantages in etiological studies of childhood neurodevelopment by incorporating information across scales to reduce dimensionality and improve precision.
UR - http://www.scopus.com/inward/record.url?scp=85025117265&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025117265&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2017.07.023
DO - 10.1016/j.envres.2017.07.023
M3 - Article
C2 - 28743040
AN - SCOPUS:85025117265
SN - 0013-9351
VL - 158
SP - 737
EP - 747
JO - Environmental Research
JF - Environmental Research
ER -