Abstract
we develop a real-time estimation approach to predict bidders' maximum willingness to pay in a multiunit ascending uniform-price and discriminatory-price (Yankee) online auction. Our two-stage approach begins with a bidder classification step, which is followed by an analytical prediction model. The classification model identifies bidders as either adopting a myopic best-response (MBR) bidding strategy or a non-MBR strategy. We then use a generalized bid-inversion function to estimate the willingness to pay for MBR bidders. We empirically validate our two-stage approach using data from two popular online auction sites. Our joint classification-and- prediction approach outperforms two other naive prediction strategies that draw random valuations between a bidder's current bid and the known market upper bound. Our prediction results indicate that, on average, our estimates are within 2% of bidders' revealed willingness to pay for Yankee and uniform-price multiunit auctions. We discuss how our results can facilitate mechanism-design changes such as dynamic-bid increments and dynamic buy-it-now prices.
Original language | English (US) |
---|---|
Pages (from-to) | 345-355 |
Number of pages | 11 |
Journal | INFORMS Journal on Computing |
Volume | 20 |
Issue number | 3 |
DOIs | |
State | Published - 2008 |
Keywords
- Dynamic-mechanism design
- Online auctions
- Predicting willingness to pay
ASJC Scopus subject areas
- Software
- Information Systems
- Computer Science Applications
- Management Science and Operations Research