TY - JOUR
T1 - Precision Orbit of δ Delphini and Prospects for Astrometric Detection of Exoplanets
AU - Gardner, Tyler
AU - Monnier, John D.
AU - Fekel, Francis C.
AU - Williamson, Mike
AU - Duncan, Douglas K.
AU - White, Timothy R.
AU - Ireland, Michael
AU - Adams, Fred C.
AU - Barman, Travis
AU - Baron, Fabien
AU - Brummelaar, Theo Ten
AU - Che, Xiao
AU - Huber, Daniel
AU - Kraus, Stefan
AU - Roettenbacher, Rachael M.
AU - Schaefer, Gail
AU - Sturmann, Judit
AU - Sturmann, Laszlo
AU - Swihart, Samuel J.
AU - Zhao, Ming
N1 - Funding Information:
State University is supported by the state of Tennessee through its Centers of Excellence program. S.K. acknowledges support from a European Research Council Starting Grant (Grant Agreement No. 639889) and STFC Rutherford Fellowship (ST/J004030/1). D.H. acknowledges support by the National Aeronautics and Space Administration under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. T.R.W. acknowledges the support of the Villum Foundation (research grant 10118). We thank the anonymous referee for insightful comments and suggestions.
Funding Information:
This work is based upon observations obtained with the Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory. The CHARA Array is supported by the National Science Foundation under Grants No. AST-1211929 and AST-1411654. Institutional support has been provided from the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. This research has made use of the Jean-Marie Mariotti Center SearchCal service.18 J.D.M. and T.G. wish to gratefully acknowledge support by NASA XRP Grant NNX16AD43G. Astronomy at Tennessee
Publisher Copyright:
© 2018 The American Astronomical Society. All rights reserved.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Combining visual and spectroscopic orbits of binary stars leads to a determination of the full 3D orbit, individual masses, and distance to the system. We present a full analysis of the evolved binary system δ Delphini using astrometric data from the MIRC and PAVO instruments on the CHARA long-baseline interferometer, 97 new spectra from the Fairborn Observatory, and 87 unpublished spectra from the Lick Observatory. We determine the full set of orbital elements for δ Del, along with masses of 1.78 ±0.07 M o and 1.62 ±0.07 M o for each component, and a distance of 63.61 ±0.89 pc. These results are important in two contexts: for testing stellar evolution models and for defining the detection capabilities for future planet searches. We find that the evolutionary state of this system is puzzling, as our measured flux ratios, radii, and masses imply a ∼200 Myr age difference between the components, using standard stellar evolution models. Possible explanations for this age discrepancy include mass transfer scenarios with a now-ejected tertiary companion. For individual measurements taken over a span of two years, we achieve <10 μas precision on the differential position with 10 minute observations. The high precision of our astrometric orbit suggests that exoplanet detection capabilities are within reach of MIRC at CHARA. We compute exoplanet detection limits around δ Del and conclude that, if this precision is extended to wider systems, we should be able to detect most exoplanets >2 M J on orbits >0.75 au around individual components of hot binary stars via differential astrometry.
AB - Combining visual and spectroscopic orbits of binary stars leads to a determination of the full 3D orbit, individual masses, and distance to the system. We present a full analysis of the evolved binary system δ Delphini using astrometric data from the MIRC and PAVO instruments on the CHARA long-baseline interferometer, 97 new spectra from the Fairborn Observatory, and 87 unpublished spectra from the Lick Observatory. We determine the full set of orbital elements for δ Del, along with masses of 1.78 ±0.07 M o and 1.62 ±0.07 M o for each component, and a distance of 63.61 ±0.89 pc. These results are important in two contexts: for testing stellar evolution models and for defining the detection capabilities for future planet searches. We find that the evolutionary state of this system is puzzling, as our measured flux ratios, radii, and masses imply a ∼200 Myr age difference between the components, using standard stellar evolution models. Possible explanations for this age discrepancy include mass transfer scenarios with a now-ejected tertiary companion. For individual measurements taken over a span of two years, we achieve <10 μas precision on the differential position with 10 minute observations. The high precision of our astrometric orbit suggests that exoplanet detection capabilities are within reach of MIRC at CHARA. We compute exoplanet detection limits around δ Del and conclude that, if this precision is extended to wider systems, we should be able to detect most exoplanets >2 M J on orbits >0.75 au around individual components of hot binary stars via differential astrometry.
KW - astrometry
KW - binaries: close
KW - binaries: spectroscopic
KW - binaries: visual
KW - planets and satellites: detection
UR - http://www.scopus.com/inward/record.url?scp=85044033426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044033426&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/aaac80
DO - 10.3847/1538-4357/aaac80
M3 - Article
AN - SCOPUS:85044033426
SN - 0004-637X
VL - 855
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 1
ER -