Abstract
We report the first application of a potential-modulated spectroelectrochemical ATR (PM-ATR) instrument utilizing multiple internal reflections at an optically transparent electrode to study the charge-transfer kinetics and electrochromic response of adsorbed films. A sinusoidally modulated potential waveform was applied to an indium-tin oxide (ITO) electrode while simultaneously monitoring the optical reflectivity of thin (2-6 equivalent monolayers) copolymer films of poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4ethylenedioxythiophene methanol) (PEDTM), previously characterized in our laboratory.1 At high modulation frequencies the measured response of the polymer film is selective toward the fastest electrochromic processes in the film, presumably those occurring within the first adsorbed monolayer. Quantitative determination of the electrochromic switching rate, derived from the frequency response of the attenuated reflectivity, shows a linear decrease in the rate, from 11 × 103 s-1 to × 103 s -1, with increasing proportions of PEDTM in the copolymer, suggesting that interactions between the methanol substituent on EDTM and the ITO surface slow the switching process by limiting the rate of conformational change in the polymer film.
Original language | English (US) |
---|---|
Pages (from-to) | 4900-4907 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry B |
Volume | 110 |
Issue number | 10 |
DOIs | |
State | Published - Mar 16 2006 |
Externally published | Yes |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry