TY - JOUR
T1 - Polycyclic aromatic hydrocarbon/metal mixtures
T2 - Effect on PAH induction of CYP1A1 in human HEPG2 cells
AU - Vakharia, Dilip D.
AU - Liu, Ning
AU - Pause, Ronald
AU - Fasco, Michael
AU - Bessette, Erin
AU - Zhang, Qing Yu
AU - Kaminsky, Laurence S.
PY - 2001
Y1 - 2001
N2 - Environmental polycyclic aromatic hydrocarbons (PAHs) and metals coexist, and such mixtures could affect the carcinogenicity of PAHs, possibly by modification of PAH induction of the PAH-bioactivating CYP1A. The effect on PAH-mediated CYP1A induction of arsenic, lead, mercury, or cadmium (ranked as the most hazardous environmental metals by the Environmental Protection Agency and the Agency for Toxic Substances and Disease Registry) has thus been investigated. Induction of CYP1A1 by benzo[a]pyrene (BAP), benzo[b]fluoranthene (BBF), dibenzo[a,h]anthracene (DBAHA), benzo[a]anthracene (BAA), or benzo[k]fluoranthene (BKF) was probed by ethoxyresorufin-O-deethylase activity (EROD) in 96-well plates of human HepG2 cells, by immunoblot analysis, and by reverse transcription-polymerase chain reaction. Cells rapidly took up PAHs (BAP, BKF) from medium; by 24 h only 14% remained in the medium, and no detectable PAH bound to well walls. Induction efficiency (relative to dimethyl sulfoxide controls) was in the order BKF (16-fold) > DBAHA (14-fold) > BAA (4-fold) > BAP (3-fold) > BBF (1-fold), all at 5 μM PAH. The metals did not markedly affect cell viability at concentrations of arsenic, 5 μ; lead, 50 μM; mercury, 5 μM; and cadmium, 5 μM. At 5 μM PAH concentration, all of the metals decreased levels of PAH-induced CYP1A1 activities (direct inhibition of EROD activity was excluded) by variable extents and in a PAH-dependent manner. With BAP as inducer decreases in induction were arsenic, 57%; cadmium, 82%; mercury, 4%; and lead, 20%. The decreases were not a consequence of transcriptional down-regulation. One possible conclusion is that these metals could diminish PAH carcinogenic potential by decreasing PAH-mediated induction of their bioactivation by CYP1A1.
AB - Environmental polycyclic aromatic hydrocarbons (PAHs) and metals coexist, and such mixtures could affect the carcinogenicity of PAHs, possibly by modification of PAH induction of the PAH-bioactivating CYP1A. The effect on PAH-mediated CYP1A induction of arsenic, lead, mercury, or cadmium (ranked as the most hazardous environmental metals by the Environmental Protection Agency and the Agency for Toxic Substances and Disease Registry) has thus been investigated. Induction of CYP1A1 by benzo[a]pyrene (BAP), benzo[b]fluoranthene (BBF), dibenzo[a,h]anthracene (DBAHA), benzo[a]anthracene (BAA), or benzo[k]fluoranthene (BKF) was probed by ethoxyresorufin-O-deethylase activity (EROD) in 96-well plates of human HepG2 cells, by immunoblot analysis, and by reverse transcription-polymerase chain reaction. Cells rapidly took up PAHs (BAP, BKF) from medium; by 24 h only 14% remained in the medium, and no detectable PAH bound to well walls. Induction efficiency (relative to dimethyl sulfoxide controls) was in the order BKF (16-fold) > DBAHA (14-fold) > BAA (4-fold) > BAP (3-fold) > BBF (1-fold), all at 5 μM PAH. The metals did not markedly affect cell viability at concentrations of arsenic, 5 μ; lead, 50 μM; mercury, 5 μM; and cadmium, 5 μM. At 5 μM PAH concentration, all of the metals decreased levels of PAH-induced CYP1A1 activities (direct inhibition of EROD activity was excluded) by variable extents and in a PAH-dependent manner. With BAP as inducer decreases in induction were arsenic, 57%; cadmium, 82%; mercury, 4%; and lead, 20%. The decreases were not a consequence of transcriptional down-regulation. One possible conclusion is that these metals could diminish PAH carcinogenic potential by decreasing PAH-mediated induction of their bioactivation by CYP1A1.
UR - http://www.scopus.com/inward/record.url?scp=0034956876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034956876&partnerID=8YFLogxK
M3 - Article
C2 - 11408366
AN - SCOPUS:0034956876
SN - 0090-9556
VL - 29
SP - 999
EP - 1006
JO - Drug Metabolism and Disposition
JF - Drug Metabolism and Disposition
IS - 7
ER -