Abstract
Polo-like kinase 4 (Plk4) is a conserved master regulator of centriole assembly [1]. Previously, we found that Drosophila Plk4 protein levels are actively suppressed during interphase [2]. Degradation of interphase Plk4 prevents centriole overduplication and is mediated by the ubiquitin-ligase complex SCFSlimb/βTrCP [3, 4]. Since Plk4 stability depends on its activity [5, 6], we studied the consequences of inactivating Plk4 or perturbing its phosphorylation state within its Slimb-recognition motif (SRM). Mass spectrometry of in-vitro-phosphorylated Plk4 and Plk4 purified from cells reveals that it is directly responsible for extensively autophosphorylating and generating its Slimb-binding phosphodegron. Phosphorylatable residues within this regulatory region were systematically mutated to determine their impact on Plk4 protein levels and centriole duplication when expressed in S2 cells. Notably, autophosphorylation of a single residue (Ser293) within the SRM is critical for Slimb binding and ubiquitination. Our data also demonstrate that autophosphorylation of numerous residues flanking S293 collectively contribute to establishing a high-affinity binding site for SCFSlimb. Taken together, our findings suggest that Plk4 directly generates its own phosphodegron and can do so without the assistance of an additional kinase(s).
Original language | English (US) |
---|---|
Pages (from-to) | 2255-2261 |
Number of pages | 7 |
Journal | Current Biology |
Volume | 23 |
Issue number | 22 |
DOIs | |
State | Published - Nov 18 2013 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Agricultural and Biological Sciences