Abstract
Microcavity exciton polariton systems can have a wide range of macroscopic quantum effects that may be turned into better photonic technologies. Polariton Bose-Einstein condensation and photon lasing have been widely accepted in the limits of low and high carrier densities, but identification of the expected Bardeen-Cooper-Schrieffer (BCS) state at intermediate densities remains elusive, as the optical-gain mechanism cannot be directly inferred from existing experiments. Here, using a microcavity with strong polarization selectivity, we gain direct experimental access to the reservoir absorption in the presence of polariton condensation and lasing, which reveals a fermionic gain mechanism underlying the polariton laser. A microscopic many-particle theory shows that this polariton lasing state is consistent with an open-dissipative-pumped system analog of a polaritonic BCS state.
Original language | English (US) |
---|---|
Article number | 011018 |
Journal | Physical Review X |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Jan 28 2021 |
ASJC Scopus subject areas
- General Physics and Astronomy