Polarimetric modeling and assessment of science cases for Giant Magellan Telescope-Polarimeter (GMT-Pol)

GMT-Pol team

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


Polarization observations through the next-generation large telescopes will be invaluable for exploring the magnetic fields and composition of jets in AGN, multi-messenger transients follow-up, and understanding interstellar dust and magnetic fields. The 25m Giant Magellan Telescope (GMT) is one of the next-generation large telescopes and is expected to have its first light in 2029. The telescope consists of a primary mirror and an adaptive secondary mirror comprising seven circular segments. The telescope supports instruments at both Nasmyth as well as Gregorian focus. However, none of the first or second-generation instruments on GMT has the polarimetric capability. This paper presents a detailed polarimetric modeling of the GMT for both Gregorian and folded ports for astronomical B-K filter bands and a field of view of 5 arc minutes. At 500nm, The instrumental polarization is 0.1% and 3% for the Gregorian and folded port, respectively. The linear to circular crosstalk is 0.1% and 30% for the Gregorian and folded ports, respectively. The Gregorian focus gives the GMT a significant competitive advantage over TMT and ELT for sensitive polarimetry, as these telescopes support instruments only on the Nasmyth platform. We also discuss a list of polarimetric science cases and assess science case requirements vs. the modeling results. Finally, we discuss the possible routes for polarimetry with GMT and show the preliminary optical design of the GMT polarimeter.

Original languageEnglish (US)
Title of host publicationPolarization Science and Remote Sensing XI
EditorsMeredith K. Kupinski, Joseph A. Shaw, Frans Snik
ISBN (Electronic)9781510665941
StatePublished - 2023
EventPolarization Science and Remote Sensing XI 2023 - San Diego, United States
Duration: Aug 21 2023Aug 22 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


ConferencePolarization Science and Remote Sensing XI 2023
Country/TerritoryUnited States
CitySan Diego


  • Astronomical polarimetry
  • Giant Magellan Telescope
  • Instrumental polarization
  • Polarization calibration

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Polarimetric modeling and assessment of science cases for Giant Magellan Telescope-Polarimeter (GMT-Pol)'. Together they form a unique fingerprint.

Cite this