Point-of-interest recommendations: Learning potential check-ins from friends

Huayu Li, Yong Ge, Richang Hong, Hengshu Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

255 Scopus citations

Abstract

The emergence of Location-based Social Network (LBSN) services provides a wonderful opportunity to build personalized Point-of-Interest (POI) recommender systems. Although a personalized POI recommender system can significantly facilitate users' outdoor activities, it faces many challenging problems, such as the hardness to model user's POI decision making process and the difficulty to address data sparsity and user/location cold-start problem. To cope with these challenges, we define three types of friends (i.e., social friends, location friends, and neighboring friends) in LBSN, and develop a two-step framework to leverage the information of friends to improve POI recommendation accuracy and address cold-start problem. Specifically, we first propose to learn a set of potential locations that each individual's friends have checked-in before and this individual is most interested in. Then we incorporate three types of check-ins (i.e., observed check-ins, potential check-ins and other unobserved check-ins) into matrix factorization model using two different loss functions (i.e., the square error based loss and the ranking error based loss). To evaluate the proposed model, we conduct extensive experiments with many state-of-the-art baseline methods and evaluation metrics on two real-world data sets. The experimental results demonstrate the effectiveness of our methods.

Original languageEnglish (US)
Title of host publicationKDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages975-984
Number of pages10
ISBN (Electronic)9781450342322
DOIs
StatePublished - Aug 13 2016
Event22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 - San Francisco, United States
Duration: Aug 13 2016Aug 17 2016

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume13-17-August-2016

Conference

Conference22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016
Country/TerritoryUnited States
CitySan Francisco
Period8/13/168/17/16

Keywords

  • Matrix factorization
  • Point-of-interest
  • Recommendation

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Point-of-interest recommendations: Learning potential check-ins from friends'. Together they form a unique fingerprint.

Cite this