TY - GEN
T1 - PoF
T2 - 29th Annual Network and Distributed System Security Symposium, NDSS 2022
AU - Xu, Ziqi
AU - Li, Jingcheng
AU - Pan, Yanjun
AU - Lazos, Loukas
AU - Li, Ming
AU - Ghose, Nirnimesh
N1 - Publisher Copyright:
© 2022 29th Annual Network and Distributed System Security Symposium, NDSS 2022. All Rights Reserved.
PY - 2022
Y1 - 2022
N2 - Cooperative vehicle platooning significantly improves highway safety, fuel efficiency, and traffic flow. In this model, a set of vehicles move in line formation and coordinate acceleration, braking, and steering using a combination of physical sensing and vehicle-to-vehicle (V2V) messaging. The authenticity and integrity of the V2V messages are paramount to safety. For this reason, recent V2V and V2X standards support the integration of a PKI. However, a PKI cannot bind a vehicle's digital identity to the vehicle's physical state (location, velocity, etc.). As a result, a vehicle with valid cryptographic credentials can impact platoons from a remote location. In this paper, we seek to provide the missing link between the physical and the digital world in the context of vehicle platooning. We propose a new access control protocol we call Proof-of-Following (PoF) that verifies the following distance between a candidate and a verifier. The main idea is to draw security from the common, but constantly changing environment experienced by the closely traveling vehicles. We use the large-scale fading effect of ambient RF signals as a common source of randomness to construct a PoF primitive. The correlation of large-scale fading is an ideal candidate for the mobile outdoor environment because it exponentially decays with distance and time. We evaluate our PoF protocol on an experimental platoon of two vehicles in freeway, highway, and urban driving conditions. We demonstrate that the PoF withstands both the pre-recording and following attacks with overwhelming probability.
AB - Cooperative vehicle platooning significantly improves highway safety, fuel efficiency, and traffic flow. In this model, a set of vehicles move in line formation and coordinate acceleration, braking, and steering using a combination of physical sensing and vehicle-to-vehicle (V2V) messaging. The authenticity and integrity of the V2V messages are paramount to safety. For this reason, recent V2V and V2X standards support the integration of a PKI. However, a PKI cannot bind a vehicle's digital identity to the vehicle's physical state (location, velocity, etc.). As a result, a vehicle with valid cryptographic credentials can impact platoons from a remote location. In this paper, we seek to provide the missing link between the physical and the digital world in the context of vehicle platooning. We propose a new access control protocol we call Proof-of-Following (PoF) that verifies the following distance between a candidate and a verifier. The main idea is to draw security from the common, but constantly changing environment experienced by the closely traveling vehicles. We use the large-scale fading effect of ambient RF signals as a common source of randomness to construct a PoF primitive. The correlation of large-scale fading is an ideal candidate for the mobile outdoor environment because it exponentially decays with distance and time. We evaluate our PoF protocol on an experimental platoon of two vehicles in freeway, highway, and urban driving conditions. We demonstrate that the PoF withstands both the pre-recording and following attacks with overwhelming probability.
UR - http://www.scopus.com/inward/record.url?scp=85138207992&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138207992&partnerID=8YFLogxK
U2 - 10.14722/ndss.2022.23077
DO - 10.14722/ndss.2022.23077
M3 - Conference contribution
AN - SCOPUS:85138207992
T3 - 29th Annual Network and Distributed System Security Symposium, NDSS 2022
BT - 29th Annual Network and Distributed System Security Symposium, NDSS 2022
PB - The Internet Society
Y2 - 24 April 2022 through 28 April 2022
ER -