TY - JOUR
T1 - Pluronic P85 block copolymer enhances opioid peptide analgesia
AU - Witt, Ken A.
AU - Huber, Jason D.
AU - Egleton, Richard D.
AU - Davis, Thomas P.
PY - 2002/11/1
Y1 - 2002/11/1
N2 - Peptide-based drug development is a rapidly growing field within pharmaceutical research. Nevertheless, peptides have found limited clinical use due to several physiological and pathological factors. Pluronic block copolymers represent a growing technology with the potential to enhance efficacy of peptide therapeutics. This investigation assesses Pluronic P85 (P85) and its potential to enhance opioid peptide analgesia. Two opioid peptides, [D-Pen2,D-Pen5]-enkephalin (DPDPE) and biphalin, were examined as to the benefits of P85 coadministration, above (1.0%) and below (0.01%) the critical micelle concentration, with morphine as a nonpeptide control. P85 was examined in vitro to assess blood-brain barrier uptake in association with P-glycoprotein effect, DPDPE and morphine being P-glycoprotein substrates. P85 coadministration with DPDPE and biphalin showed increased (p < 0.01) analgesia with both 0.01 and 1.0% P85. Morphine showed increased (p < 0.01) analgesia with 0.01% P85 only. This increase in analgesia is due to both an increase in peak effect, as well as a prolongation of effect. P85 increased cellular uptake of 125I-DPDPE and [3H]morphine at 0.01% (p < 0.01) and 1.0% (p < 0.01 and p < 0.05, respectively). Cyclosporin-A coadministration with 125I-DPDPE and [3H]morphine increased cellular uptake (p <0.01 and p < 0.05, respectively). 125I-DPDPE and [3H]morphine coadministered with 0.01% P85 and cyclosporin-A increased cellular uptake compared with control (p < 0.01) and compared with cyclosporin-A coadministration without P85 (p < 0.01 and p < 0.05, respectively). This indicates that, in addition to P-gp inhibition, 0.01% P85 increased 125I-DPDPE and [3H]morphine uptake. In our examination, we determined that P85 enhanced the analgesic profile of biphalin, DPDPE, and morphine, both above and below the critical micelle concentration.
AB - Peptide-based drug development is a rapidly growing field within pharmaceutical research. Nevertheless, peptides have found limited clinical use due to several physiological and pathological factors. Pluronic block copolymers represent a growing technology with the potential to enhance efficacy of peptide therapeutics. This investigation assesses Pluronic P85 (P85) and its potential to enhance opioid peptide analgesia. Two opioid peptides, [D-Pen2,D-Pen5]-enkephalin (DPDPE) and biphalin, were examined as to the benefits of P85 coadministration, above (1.0%) and below (0.01%) the critical micelle concentration, with morphine as a nonpeptide control. P85 was examined in vitro to assess blood-brain barrier uptake in association with P-glycoprotein effect, DPDPE and morphine being P-glycoprotein substrates. P85 coadministration with DPDPE and biphalin showed increased (p < 0.01) analgesia with both 0.01 and 1.0% P85. Morphine showed increased (p < 0.01) analgesia with 0.01% P85 only. This increase in analgesia is due to both an increase in peak effect, as well as a prolongation of effect. P85 increased cellular uptake of 125I-DPDPE and [3H]morphine at 0.01% (p < 0.01) and 1.0% (p < 0.01 and p < 0.05, respectively). Cyclosporin-A coadministration with 125I-DPDPE and [3H]morphine increased cellular uptake (p <0.01 and p < 0.05, respectively). 125I-DPDPE and [3H]morphine coadministered with 0.01% P85 and cyclosporin-A increased cellular uptake compared with control (p < 0.01) and compared with cyclosporin-A coadministration without P85 (p < 0.01 and p < 0.05, respectively). This indicates that, in addition to P-gp inhibition, 0.01% P85 increased 125I-DPDPE and [3H]morphine uptake. In our examination, we determined that P85 enhanced the analgesic profile of biphalin, DPDPE, and morphine, both above and below the critical micelle concentration.
UR - http://www.scopus.com/inward/record.url?scp=0036828225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036828225&partnerID=8YFLogxK
U2 - 10.1124/jpet.102.039545
DO - 10.1124/jpet.102.039545
M3 - Article
C2 - 12388663
AN - SCOPUS:0036828225
SN - 0022-3565
VL - 303
SP - 760
EP - 767
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 2
ER -