Planar drawings of higher-genus graphs

Christian A. Duncan, Michael T. Goodrich, Stephen G. Kobourov

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

In this paper, we give polynomial-time algorithms that can take a graph G with a given combinatorial embedding on an orientable surface S of genus g and produce a planar drawing of G in R2, with a bounding face dened by a polygonal schema P for S. Our drawings are planar, but they allow for multiple copies of vertices and edges on P's boundary, which is a common way of visualizing higher-genus graphs in the plane. However, unlike traditional approaches the copies of the vertices might not be in perfect alignment but we guarantee that their order along the boundary is still preserved. Our drawings can be dened with respect to either a canonical polygonal schema or a polygonal cutset schema, which provides an interesting tradeo, since canonical schemas have fewer sides, and have a nice topological structure, but they can have many more repeated vertices and edges than general polygonal cutsets. As a side note, we show that it is NP-complete to determine whether a given graph embedded in a genus-g surface has a set of 2g fundamental cycles with vertex-disjoint interiors, which would be desirable from a graph-drawing perspective.

Original languageEnglish (US)
Pages (from-to)7-32
Number of pages26
JournalJournal of Graph Algorithms and Applications
Volume15
Issue number1
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science
  • Computer Science Applications
  • Geometry and Topology
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Planar drawings of higher-genus graphs'. Together they form a unique fingerprint.

Cite this