Physics-informed neural networks and functional interpolation for data-driven parameters discovery of epidemiological compartmental models

Enrico Schiassi, Mario De Florio, Andrea D’ambrosio, Daniele Mortari, Roberto Furfaro

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Fingerprint

Dive into the research topics of 'Physics-informed neural networks and functional interpolation for data-driven parameters discovery of epidemiological compartmental models'. Together they form a unique fingerprint.

Keyphrases

Physics

Engineering

Chemical Engineering