TY - JOUR
T1 - Physical properties of spectroscopically confirmed galaxies at z ≥ 6. I. basic characteristics of the rest-frame UV continuum and Lyα emission
AU - Jiang, Linhua
AU - Egami, Eiichi
AU - Mechtley, Matthew
AU - Fan, Xiaohui
AU - Cohen, Seth H.
AU - Windhorst, Rogier A.
AU - Dave, Romeel S
AU - Finlator, Kristian
AU - Kashikawa, Nobunari
AU - Ouchi, Masami
AU - Shimasaku, Kazuhiro
PY - 2013/8/1
Y1 - 2013/8/1
N2 - We present deep Hubble Space Telescope near-IR and Spitzer mid-IR observations of a large sample of spectroscopically confirmed galaxies at z ≥ 6. The sample consists of 51 Lyα emitters (LAEs) at z ≃ 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 ≤ z ≤ 6.5. The near-IR images were mostly obtained with WFC3 in the F125W and F160W bands, and the mid-IR images were obtained with IRAC in the 3.6 μm and 4.5 μm bands. Our galaxies also have deep optical imaging data from Subaru Suprime-Cam. We utilize the multi-band data and secure redshifts to derive their rest-frame UV properties. These galaxies have steep UV-continuum slopes roughly between β ≃ -1.5 and -3.5, with an average value of β ≃ -2.3, slightly steeper than the slopes of LBGs in previous studies. The slope shows little dependence on UV-continuum luminosity except for a few of the brightest galaxies. We find a statistically significant excess of galaxies with slopes around β ≃ -3, suggesting the existence of very young stellar populations with extremely low metallicity and dust content. Our galaxies have moderately strong rest-frame Lyα equivalent width (EW) in a range of ∼10 to ∼200 Å. The star formation rates are also moderate, from a few to a few tens of solar masses per year. The LAEs and LBGs in this sample share many common properties, implying that LAEs represent a subset of LBGs with strong Lyα emission. Finally, the comparison of the UV luminosity functions between LAEs and LBGs suggests that there exists a substantial population of faint galaxies with weak Lyα emission (EW < 20 Å) that could be the dominant contribution to the total ionizing flux at z ≥ 6.
AB - We present deep Hubble Space Telescope near-IR and Spitzer mid-IR observations of a large sample of spectroscopically confirmed galaxies at z ≥ 6. The sample consists of 51 Lyα emitters (LAEs) at z ≃ 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 ≤ z ≤ 6.5. The near-IR images were mostly obtained with WFC3 in the F125W and F160W bands, and the mid-IR images were obtained with IRAC in the 3.6 μm and 4.5 μm bands. Our galaxies also have deep optical imaging data from Subaru Suprime-Cam. We utilize the multi-band data and secure redshifts to derive their rest-frame UV properties. These galaxies have steep UV-continuum slopes roughly between β ≃ -1.5 and -3.5, with an average value of β ≃ -2.3, slightly steeper than the slopes of LBGs in previous studies. The slope shows little dependence on UV-continuum luminosity except for a few of the brightest galaxies. We find a statistically significant excess of galaxies with slopes around β ≃ -3, suggesting the existence of very young stellar populations with extremely low metallicity and dust content. Our galaxies have moderately strong rest-frame Lyα equivalent width (EW) in a range of ∼10 to ∼200 Å. The star formation rates are also moderate, from a few to a few tens of solar masses per year. The LAEs and LBGs in this sample share many common properties, implying that LAEs represent a subset of LBGs with strong Lyα emission. Finally, the comparison of the UV luminosity functions between LAEs and LBGs suggests that there exists a substantial population of faint galaxies with weak Lyα emission (EW < 20 Å) that could be the dominant contribution to the total ionizing flux at z ≥ 6.
KW - cosmology: observations
KW - galaxies: evolution
KW - galaxies: high-redshift
UR - http://www.scopus.com/inward/record.url?scp=84880639422&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880639422&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/772/2/99
DO - 10.1088/0004-637X/772/2/99
M3 - Article
AN - SCOPUS:84880639422
SN - 0004-637X
VL - 772
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 99
ER -