Abstract
The photoinduced formation of thin film structures from a Ti-alkoxide precursor (OPy)2Ti(TAP)2, where OPy = OC6H6N, TAP = OC6H2[CH2N(CH3)2] 3-2,4,6, was demonstrated via direct deposition from a pyridine-based solution and by optical illumination of a solid-state spin-coated thin film of the compound. Photopatterned physical relief structures were produced using both of these deposition methods and feature sizes as small as ∼1 μm were readily achieved. Surface investigations of the material's nanostructure revealed that films photo-deposited from solution exhibited nanometer-scale surface roughness with evenly distributed surface porosity (∼10 nm sized pores) while films produced through the illumination of spin-coated thin films exhibited, in comparison, a reduction in surface roughness. Vibrational spectra were compared with the results of quantum chemical computations (density-functional theory) of potential photoproducts in an attempt to identify and distinguish the dominant structural groups resulting from the optical processing of each precursor form (i.e., solution versus solid-state). It was determined that ultraviolet irradiation for both thin-film formation techniques resulted in a disruption of the ligand groups, facilitating the initiation of hydrolysis and condensation reactions in the films.
Original language | English (US) |
---|---|
Pages (from-to) | 754-762 |
Number of pages | 9 |
Journal | Journal of Materials Research |
Volume | 26 |
Issue number | 6 |
DOIs | |
State | Published - Mar 28 2011 |
Keywords
- Nanostructure
- Photochemical
- Sol-gel
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering