TY - JOUR
T1 - Phosphorylation of SNAP-23 in Activated Human Platelets
AU - Polgár, János
AU - Lane, William S.
AU - Chung, Sul Hee
AU - Houng, Aiilyan K.
AU - Reed, Guy L.
PY - 2003/11/7
Y1 - 2003/11/7
N2 - Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet α, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser 161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phos. phorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.
AB - Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet α, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser 161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phos. phorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.
UR - http://www.scopus.com/inward/record.url?scp=0242497925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242497925&partnerID=8YFLogxK
U2 - 10.1074/jbc.M307864200
DO - 10.1074/jbc.M307864200
M3 - Article
C2 - 12930825
AN - SCOPUS:0242497925
SN - 0021-9258
VL - 278
SP - 44369
EP - 44376
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 45
ER -