TY - JOUR
T1 - Phenotype of vigilin expressing breast cancer cells binding to the 69 nt 3′UTR element in CSF-1R mRNA
AU - Woo, Ho Hyung
AU - Lee, Sang C.
AU - Stoffer, Jha'nae B.
AU - Rush, Demaretta
AU - Chambers, Setsuko K.
N1 - Funding Information:
We appreciate Steven J. Gibson and Arpan Ajit Patel for their excellent technical support. We also appreciate Women's Cancers, as well as Ray Nagle, MD, PhD, for support of this project. This work was supported by DOD grant DAMD 17-02-1-0633 (to SKC), Arizona Biomedical Research Commission grant # 0802 (to SKC), and the Rodel Foundation (to SKC). Research reported in this publication was also supported by the National Cancer Institute Cancer Center Support Grant P30 CA023074 and used the Tissue Acquisition and Cellular /Molecular Analysis Shared Resource (TACMASR) for providing the breast slides.
Funding Information:
We appreciate Steven J. Gibson and Arpan Ajit Patel for their excellent technical support. We also appreciate Women's Cancers, as well as Ray Nagle, MD, PhD, for support of this project. This work was supported by DOD grant DAMD 17-02-1-0633 (to SKC), Arizona Biomedical Research Commission grant #0802 (to SKC), and the Rodel Foundation (to SKC). Research reported in this publication was also supported by the National Cancer Institute Cancer Center Support Grant P30 CA023074 and used the Tissue Acquisition and Cellular /Molecular Analysis Shared Resource (TACMASR) for providing the breast slides.
Publisher Copyright:
© 2018
PY - 2019/1
Y1 - 2019/1
N2 - Vigilin, a nucleocytoplasmic shuttling protein, post-transcriptionally suppresses proto-oncogene c-fms expression (encoding CSF-1R) in breast cancer by binding to a 69 nt cis-acting 3-UTR element in CSF-1R mRNA. CSF-1R is an important mediator of breast cancer development, metastasis, and survival. We confirm that vigilin decreases in vitro reporter luciferase activity as well as the translation rate of target mRNAs. We further explore the mechanism of suppression of CSF-1R. We show that the 69 nt binding element has profound effects on translation efficiency of CSF-1R mRNA, not seen in the presence of mutation of the element. Also, mutation of the 69 nt element in the CSF-1R mRNA 3′UTR both interferes with direct vigilin binding and obviates effect of vigilin overexpression on translational repression of CSF-1R. We show that stable vigilin binding requires the full length 69 nt CSF-1R element, including the 26 nt pyrimidine-rich core. Furthermore, titration of endogenous vigilin and other proteins which bind the 69 nt element, by exogenously introduced CSF-1R mRNA 3′UTR containing the pyrimidine-rich sequence, increases the adhesion, motility, and invasion of breast cancer cells. This phenotypic effect is not seen when the 69 nt element is deleted. Lastly, we are the first to show that human breast tissues exhibit strong vigilin expression in normal breast epithelium. Our pilot data suggest decreased vigilin protein expression, along with shift from the nucleus to the cytoplasmic location, in the transition to ductal carcinoma in situ.
AB - Vigilin, a nucleocytoplasmic shuttling protein, post-transcriptionally suppresses proto-oncogene c-fms expression (encoding CSF-1R) in breast cancer by binding to a 69 nt cis-acting 3-UTR element in CSF-1R mRNA. CSF-1R is an important mediator of breast cancer development, metastasis, and survival. We confirm that vigilin decreases in vitro reporter luciferase activity as well as the translation rate of target mRNAs. We further explore the mechanism of suppression of CSF-1R. We show that the 69 nt binding element has profound effects on translation efficiency of CSF-1R mRNA, not seen in the presence of mutation of the element. Also, mutation of the 69 nt element in the CSF-1R mRNA 3′UTR both interferes with direct vigilin binding and obviates effect of vigilin overexpression on translational repression of CSF-1R. We show that stable vigilin binding requires the full length 69 nt CSF-1R element, including the 26 nt pyrimidine-rich core. Furthermore, titration of endogenous vigilin and other proteins which bind the 69 nt element, by exogenously introduced CSF-1R mRNA 3′UTR containing the pyrimidine-rich sequence, increases the adhesion, motility, and invasion of breast cancer cells. This phenotypic effect is not seen when the 69 nt element is deleted. Lastly, we are the first to show that human breast tissues exhibit strong vigilin expression in normal breast epithelium. Our pilot data suggest decreased vigilin protein expression, along with shift from the nucleus to the cytoplasmic location, in the transition to ductal carcinoma in situ.
UR - http://www.scopus.com/inward/record.url?scp=85054164333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054164333&partnerID=8YFLogxK
U2 - 10.1016/j.tranon.2018.09.012
DO - 10.1016/j.tranon.2018.09.012
M3 - Article
AN - SCOPUS:85054164333
SN - 1936-5233
VL - 12
SP - 106
EP - 115
JO - Translational Oncology
JF - Translational Oncology
IS - 1
ER -