TY - JOUR
T1 - Perturbations in the pure rotational spectrum of CoCl (X 3Φ)
T2 - A submillimeter study
AU - Flory, M. A.
AU - Halfen, D. T.
AU - Ziurys, L. M.
PY - 2004/11/1
Y1 - 2004/11/1
N2 - The millimeter/submillimeter-wave spectrum of the CoCl radical (X 3Φ i) has been recorded using direct absorption techniques in the frequency range 340-510 GHz. This work is the first pure rotational study of this molecule. The radical was created by the reaction of Cl 2 with cobalt vapor. Rotational transitions arising from the Ω=4, 3, and 2 spin-orbit components of Co 35Cl have been measured, all of which exhibit hyperfine splittings due to the 59Co nucleus (I=7/2). Transitions arising from the Co 37Cl species were also recorded, as well as those originating in the v = 1, 2, 3, and 4 vibrational states of both isotopomers. The spin-orbit pattern exhibited by the molecule is unusual, with the Ω=3 component significantly shifted relative to the other spin components. In addition, the regular octet hyperfine splittings become distorted above a certain J value for the Ω=3 transitions only. These effects suggest that the molecule is highly perturbed in its ground state, most likely a result of second-order spin-orbit mixing with a nearby isoconfigurational 1Φ 3 state. The complete data set for Co 35Cl and Co 37Cl were fit successfully with a case (a) Hamiltonian but required a large negative spin-spin constant of λ=-7196 GHz and higher order centrifugal distortion corrections to the rotational, spin-orbit, spin-spin, and hyperfine terms. The value of the spin-spin constant suggests that the Ω=3 component is shifted to higher energy and lies near the Ω=2 sublevel. The hyperfine parameters are consistent with a δ 3π 3 electron configuration and indicate that CoCl is more covalent than CoF.
AB - The millimeter/submillimeter-wave spectrum of the CoCl radical (X 3Φ i) has been recorded using direct absorption techniques in the frequency range 340-510 GHz. This work is the first pure rotational study of this molecule. The radical was created by the reaction of Cl 2 with cobalt vapor. Rotational transitions arising from the Ω=4, 3, and 2 spin-orbit components of Co 35Cl have been measured, all of which exhibit hyperfine splittings due to the 59Co nucleus (I=7/2). Transitions arising from the Co 37Cl species were also recorded, as well as those originating in the v = 1, 2, 3, and 4 vibrational states of both isotopomers. The spin-orbit pattern exhibited by the molecule is unusual, with the Ω=3 component significantly shifted relative to the other spin components. In addition, the regular octet hyperfine splittings become distorted above a certain J value for the Ω=3 transitions only. These effects suggest that the molecule is highly perturbed in its ground state, most likely a result of second-order spin-orbit mixing with a nearby isoconfigurational 1Φ 3 state. The complete data set for Co 35Cl and Co 37Cl were fit successfully with a case (a) Hamiltonian but required a large negative spin-spin constant of λ=-7196 GHz and higher order centrifugal distortion corrections to the rotational, spin-orbit, spin-spin, and hyperfine terms. The value of the spin-spin constant suggests that the Ω=3 component is shifted to higher energy and lies near the Ω=2 sublevel. The hyperfine parameters are consistent with a δ 3π 3 electron configuration and indicate that CoCl is more covalent than CoF.
UR - http://www.scopus.com/inward/record.url?scp=9744261024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=9744261024&partnerID=8YFLogxK
U2 - 10.1063/1.1795691
DO - 10.1063/1.1795691
M3 - Article
C2 - 15511159
AN - SCOPUS:9744261024
SN - 0021-9606
VL - 121
SP - 8385
EP - 8392
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 17
ER -