Abstract
Observations of the Galactic Center supermassive black hole Sagittarius A∗ (Sgr A∗) with very long-baseline interferometry (VLBI) are affected by interstellar scattering along our line of sight. At long radio observing wavelengths (≲1 cm), the scattering heavily dominates image morphology. At 3.5 mm (86 GHz), the intrinsic source structure is no longer sub-dominant to scattering, and thus the intrinsic emission from Sgr A∗ is resolvable with the Global Millimeter VLBI Array (GMVA). Long-baseline detections to the phased Atacama Large Millimeter/submillimeter Array (ALMA) in 2017 provided new constraints on the intrinsic and scattering properties of Sgr A∗, but the stochastic nature of the scattering Requires multiple observing epochs to reliably estimate its statistical properties. We present new observations with the GMVA+ALMA, taken in 2018, which confirm non-Gaussian structure in the scattered image seen in 2017. In particular, the ALMA-GBT baseline shows more flux density than expected for an anistropic Gaussian model, providing a tight constraint on the source size and an upper limit on the dissipation scale of interstellar turbulence. We find an intrinsic source extent along the minor axis of ∼100 μas both via extrapolation of longer wavelength scattering constraints and direct modeling of the 3.5 mm observations. Simultaneously fitting for the scattering parameters, we find an at-most modestly asymmetrical (major-to-minor axis ratio of 1.5 0.2) intrinsic source morphology for Sgr A∗.
Original language | English (US) |
---|---|
Article number | 99 |
Journal | Astrophysical Journal |
Volume | 915 |
Issue number | 2 |
DOIs | |
State | Published - Jul 10 2021 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science