Persistent Non-Gaussian Structure in the Image of Sagittarius A∗ at 86 GHz

S. Issaoun, M. D. Johnson, L. Blackburn, A. Broderick, P. Tiede, M. Wielgus, S. S. Doeleman, H. Falcke, K. Akiyama, G. C. Bower, C. D. Brinkerink, A. Chael, I. Cho, J. L. Gómez, A. Hernández-Gómez, D. Hughes, M. Kino, T. P. Krichbaum, E. Liuzzo, L. LoinardS. Markoff, D. P. Marrone, Y. Mizuno, J. M. Moran, Y. Pidopryhora, E. Ros, K. Rygl, Z. Q. Shen, J. Wagner

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Observations of the Galactic Center supermassive black hole Sagittarius A∗ (Sgr A∗) with very long-baseline interferometry (VLBI) are affected by interstellar scattering along our line of sight. At long radio observing wavelengths (≲1 cm), the scattering heavily dominates image morphology. At 3.5 mm (86 GHz), the intrinsic source structure is no longer sub-dominant to scattering, and thus the intrinsic emission from Sgr A∗ is resolvable with the Global Millimeter VLBI Array (GMVA). Long-baseline detections to the phased Atacama Large Millimeter/submillimeter Array (ALMA) in 2017 provided new constraints on the intrinsic and scattering properties of Sgr A∗, but the stochastic nature of the scattering Requires multiple observing epochs to reliably estimate its statistical properties. We present new observations with the GMVA+ALMA, taken in 2018, which confirm non-Gaussian structure in the scattered image seen in 2017. In particular, the ALMA-GBT baseline shows more flux density than expected for an anistropic Gaussian model, providing a tight constraint on the source size and an upper limit on the dissipation scale of interstellar turbulence. We find an intrinsic source extent along the minor axis of ∼100 μas both via extrapolation of longer wavelength scattering constraints and direct modeling of the 3.5 mm observations. Simultaneously fitting for the scattering parameters, we find an at-most modestly asymmetrical (major-to-minor axis ratio of 1.5 0.2) intrinsic source morphology for Sgr A∗.

Original languageEnglish (US)
Article number99
JournalAstrophysical Journal
Volume915
Issue number2
DOIs
StatePublished - Jul 10 2021

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Persistent Non-Gaussian Structure in the Image of Sagittarius A∗ at 86 GHz'. Together they form a unique fingerprint.

Cite this