TY - JOUR
T1 - Permeabilities for flow of interdendritic liquid in equiaxial structures
AU - Poirier, D. R.
AU - Ganesan, S.
PY - 1992/9/1
Y1 - 1992/9/1
N2 - Permeabilities for the flow of interdendritic liquid in Al-15.6wt.%Cu alloy with equiaxial structures were measured and found to be structure sensitive. The center-to-center distance between grains (153-259 μm), specific surface area (2.57 × 10-2-6.96 × 10-1 μm-1) and volume fraction of liquid (0.166-0.434) were the structural parameters studied in this investigation. During a test, coarsening of the dendrites occurred, wherein the solid morphology went from dendritic to dendritic-globular and ultimately to globular for longer times. The permeabilities of the globular structures (non-dendritic) were found to be approximately one order of magnitude greater than the permeabilities for the dendritic-globular structures, when the volume fraction of liquid is approximately 0.3. The dimensionless permeability, based on the specific surface, was found to represent best the empirical data for the globular and dendritic morphologies and the theoretical results for flow through different arrays of uniform spheres.
AB - Permeabilities for the flow of interdendritic liquid in Al-15.6wt.%Cu alloy with equiaxial structures were measured and found to be structure sensitive. The center-to-center distance between grains (153-259 μm), specific surface area (2.57 × 10-2-6.96 × 10-1 μm-1) and volume fraction of liquid (0.166-0.434) were the structural parameters studied in this investigation. During a test, coarsening of the dendrites occurred, wherein the solid morphology went from dendritic to dendritic-globular and ultimately to globular for longer times. The permeabilities of the globular structures (non-dendritic) were found to be approximately one order of magnitude greater than the permeabilities for the dendritic-globular structures, when the volume fraction of liquid is approximately 0.3. The dimensionless permeability, based on the specific surface, was found to represent best the empirical data for the globular and dendritic morphologies and the theoretical results for flow through different arrays of uniform spheres.
UR - http://www.scopus.com/inward/record.url?scp=0026916569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026916569&partnerID=8YFLogxK
U2 - 10.1016/0921-5093(92)90105-A
DO - 10.1016/0921-5093(92)90105-A
M3 - Article
AN - SCOPUS:0026916569
VL - 157
SP - 113
EP - 123
JO - Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
JF - Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
SN - 0921-5093
IS - 1
ER -