TY - GEN
T1 - Performing joint learning for passive intrusion detection in pervasive wireless environments
AU - Yang, Jie
AU - Ge, Yong
AU - Xiong, Hui
AU - Chen, Yingying
AU - Liu, Hongbo
PY - 2010
Y1 - 2010
N2 - Recent years have witnessed increasing interests in passive intrusion detection for wireless environments, e.g., asset protection in industrial facilities and emergency rescue of trapped people. Most previous studies have focused primarily on exploiting a single intrusion indicator, such as moving variance, for capturing an intrusion pattern at a time. However, in real-world, there are many intrusion patterns which may be only detectable by combining different intrusion indicators and performing detection jointly. To this end, we propose a joint intrusion learning approach, which has the ability in combining the detection power of several complementary intrusion indicators and detects different intrusion patterns at the same time. We developed the GREEK algorithm, which utilizes grid-based clustering over K-neighborhood to effectively diagnose the presence of intrusions. Further, we show that the performance of intrusion detection can be enhanced by utilizing the collaborative detecting efforts among multiple transmitter-receiver pairs. To validate the effectiveness of the joint intrusion learning method, we conducted experiments in a real-office environment using an IEEE 802.15.4 (Zigbee) network. Our experimental results provide strong evidence of the effectiveness of our joint learning approach in performing passive intrusion detection with a minimized false positive rate.
AB - Recent years have witnessed increasing interests in passive intrusion detection for wireless environments, e.g., asset protection in industrial facilities and emergency rescue of trapped people. Most previous studies have focused primarily on exploiting a single intrusion indicator, such as moving variance, for capturing an intrusion pattern at a time. However, in real-world, there are many intrusion patterns which may be only detectable by combining different intrusion indicators and performing detection jointly. To this end, we propose a joint intrusion learning approach, which has the ability in combining the detection power of several complementary intrusion indicators and detects different intrusion patterns at the same time. We developed the GREEK algorithm, which utilizes grid-based clustering over K-neighborhood to effectively diagnose the presence of intrusions. Further, we show that the performance of intrusion detection can be enhanced by utilizing the collaborative detecting efforts among multiple transmitter-receiver pairs. To validate the effectiveness of the joint intrusion learning method, we conducted experiments in a real-office environment using an IEEE 802.15.4 (Zigbee) network. Our experimental results provide strong evidence of the effectiveness of our joint learning approach in performing passive intrusion detection with a minimized false positive rate.
UR - http://www.scopus.com/inward/record.url?scp=77953307435&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953307435&partnerID=8YFLogxK
U2 - 10.1109/INFCOM.2010.5462148
DO - 10.1109/INFCOM.2010.5462148
M3 - Conference contribution
AN - SCOPUS:77953307435
SN - 9781424458363
T3 - Proceedings - IEEE INFOCOM
BT - 2010 Proceedings IEEE INFOCOM
T2 - IEEE INFOCOM 2010
Y2 - 14 March 2010 through 19 March 2010
ER -