Performance of near-infrared high-contrast imaging methods with JWST from commissioning

Jens Kammerer, Julien Girard, Aarynn L. Carter, Marshall D. Perrin, Rachel Cooper, Deepashri Thatte, Thomas Vandal, Jarron Leisenring, Jason Wang, William O. Balmer, Anand Sivaramakrishnan, Laurent Pueyo, Kimberly Ward-Duong, Ben Sunnquist, Jéa Adams Redai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

The James Webb Space Telescope (JWST) will revolutionize the field of high-contrast imaging and enable both the direct detection of Saturn-mass planets and the characterization of substellar companions in the mid-infrared. While JWST will feature unprecedented sensitivity, angular resolution will be the key factor when competing with ground-based telescopes. Here, we aim to characterize the performance of several extreme angular resolution imaging techniques available with JWST in the 3-5 µm regime based on data taken during the instrument commissioning. Firstly, we introduce custom tools to simulate, reduce, and analyze JWST NIRCam and MIRI coronagraphy data and use these tools to extract companion detection limits from on-sky NIRCam round and bar mask coronagraphy observations. Secondly, we present on-sky JWST NIRISS aperture masking interferometry (AMI) and kernel phase imaging (KPI) observations from which we extract companion detection limits using the publicly available fouriever tool. Scaled to a total integration time of one hour and a target of the brightness of AB Dor (W1 ≈ 4.4 mag, W2 ≈ 3.9 mag), we find that NIRISS AMI and KPI reach contrasts of ∼ 7-8 mag at ∼ 70 mas and ∼ 9 mag at ∼ 200 mas. Beyond ∼ 250 mas, NIRCam coronagraphy reaches deeper contrasts of ∼ 13 mag at ∼ 500 mas and ∼ 15 mag at ∼ 2 arcsec. While the bar mask performs ∼ 1 mag better than the round mask at small angular separations ≲ 0.75 arcsec, it is the other way around at large angular separations ≳ 1.5 arcsec. Moreover, the round mask gives access to the full 360 deg field-of-view which is beneficial for the search of new companions. We conclude that already during the instrument commissioning, JWST high-contrast imaging in the L- and M-bands performs close to its predicted limits and is a factor of ∼ 10 times better at large separations than the best ground-based instruments operating at similar wavelengths despite its > 2 times smaller collecting area.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2022
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsLaura E. Coyle, Shuji Matsuura, Marshall D. Perrin
PublisherSPIE
ISBN (Electronic)9781510653412
DOIs
StatePublished - 2022
EventSpace Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave - Montreal, Canada
Duration: Jul 17 2022Jul 22 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12180
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave
Country/TerritoryCanada
CityMontreal
Period7/17/227/22/22

Keywords

  • coronagraphy
  • exoplanets
  • high-contrast imaging
  • interferometry
  • planetary systems
  • space telescopes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Performance of near-infrared high-contrast imaging methods with JWST from commissioning'. Together they form a unique fingerprint.

Cite this