Patterns of wave break during ventricular fibrillation in isolated swine right ventricle

Moon Hyoung Lee, Zhilin Qu, Gregory A. Fishbein, Scott T. Lamp, Eugene H. Chang, Toshihiko Ohara, Olga Voroshilovsky, Jong R. Kil, Ali R. Hamzei, Nina C. Wang, Shien Fong Lin, James N. Weiss, Alan Garfinkel, Hrayr S. Karagueuzian, Peng Sheng Chen

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Several different patterns of wave break have been described by mapping of the tissue surface during fibrillation. However, it is not clear whether these surface patterns are caused by multiple distinct mechanisms or by a single mechanism. To determine the mechanism by which wave breaks are generated during ventricular fibrillation, we conducted optical mapping studies and single cell transmembrane potential recording in six isolated swine right ventricles (RV). Among 763 episodes of wave break (0.75 times·s-1·cm-2), optical maps showed three patterns: 80% due to a wave front encountering the refractory wave back of another wave, 11.5% due to wave fronts passing perpendicular to each other, and 8.5% due to a new (target) wave arising just beyond the refractory tail of a previous wave. Computer simulations of scroll waves in three-dimensional tissue showed that these surface patterns could be attributed to two fundamental mechanisms: head-tail interactions and filament break. We conclude that during sustained ventricular fibrillation in swine RV, surface patterns of wave break are produced by two fundamental mechanisms: head-tail interaction between waves and filament break.

Original languageEnglish (US)
Pages (from-to)H253-H265
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Issue number1 50-1
StatePublished - 2001
Externally publishedYes


  • Action potentials
  • Electrophysiology
  • Mapping
  • Reentry
  • Restitution

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)


Dive into the research topics of 'Patterns of wave break during ventricular fibrillation in isolated swine right ventricle'. Together they form a unique fingerprint.

Cite this