TY - GEN
T1 - Parametric investigation of nanosecond pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control
AU - Dawson, Robert
AU - Little, Jesse
PY - 2013
Y1 - 2013
N2 - This works builds on our previous nanosecond pulse dielectric barrier discharge (ns-DBD) plasma actuator studies by examining negative polarities. Experimental measurements are performed in quiescent atmosphere. Pulse energy is calculated using simultaneous voltage and current measurements. Electrical characteristics are evaluated as a function of peak voltage, pulse frequency, discharge length and dielectric thickness. Schlieren imaging is used to provide a relative measure of discharge energy that is coupled to the near surface gas as heat for the same parameters. Characteristics of the DBD load have a substantial effect on voltage and current traces, but frequency response remains flat for the majority of test conditions. Both energy and compression wave strength depend primarily on dielectric thickness and secondarily on actuator length. Both pulse energy and compression wave strength increase as peak voltage to the power of approximately 3.5 in the range surveyed. Results agree qualitatively with previous studies of ns-DBDs driven by positive polarity pulses.
AB - This works builds on our previous nanosecond pulse dielectric barrier discharge (ns-DBD) plasma actuator studies by examining negative polarities. Experimental measurements are performed in quiescent atmosphere. Pulse energy is calculated using simultaneous voltage and current measurements. Electrical characteristics are evaluated as a function of peak voltage, pulse frequency, discharge length and dielectric thickness. Schlieren imaging is used to provide a relative measure of discharge energy that is coupled to the near surface gas as heat for the same parameters. Characteristics of the DBD load have a substantial effect on voltage and current traces, but frequency response remains flat for the majority of test conditions. Both energy and compression wave strength depend primarily on dielectric thickness and secondarily on actuator length. Both pulse energy and compression wave strength increase as peak voltage to the power of approximately 3.5 in the range surveyed. Results agree qualitatively with previous studies of ns-DBDs driven by positive polarity pulses.
UR - http://www.scopus.com/inward/record.url?scp=84881561148&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881561148&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84881561148
SN - 9781624101816
T3 - 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
BT - 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
T2 - 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
Y2 - 7 January 2013 through 10 January 2013
ER -