Parametric design study of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) space telescope

Siddhartha Sirsi, Yuzuru Takashima, Art Palisoc, Aman Chandra, Chistopher Walker, Daewook Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

OASIS (Orbiting Astronomical Satellite for Investigating Stellar Systems) is a space-based observatory with a large inflatable primary reflector that will perform high spectral resolution observations at terahertz frequencies. An inflatable metallized polymer membrane serves as the primary antenna with large photon collecting area, followed by aberration correction mirror pair that enables a large field of regards of 0.1 degrees while achieving diffraction limited performance over a wide terahertz wavelength ranging from 80 μm to 660 μm. An analytical model is developed to define a solution space based on the profile of primary reflector which is a function of pressure. The photon collecting area, size and weight of the correction mirror pair, and optical aberrations are governed by a 1st order power arrangement of the telescope and is a function of base radius and clear aperture of the primary reflector. Based on the parametric design study, the figure of merit for the profile of the primary reflector is discussed and a baseline design satisfying the scientific and system requirements is proposed.

Original languageEnglish (US)
Title of host publicationAstronomical Optics
Subtitle of host publicationDesign, Manufacture, and Test of Space and Ground Systems III
EditorsTony B. Hull, Daewook Kim, Pascal Hallibert, Fanny Keller
PublisherSPIE
ISBN (Electronic)9781510644786
DOIs
StatePublished - 2021
EventAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems III 2021 - San Diego, United States
Duration: Aug 1 2021Aug 5 2021

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11820
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems III 2021
Country/TerritoryUnited States
CitySan Diego
Period8/1/218/5/21

Keywords

  • Inflatable optics
  • OASIS mission
  • Solution space
  • Terahertz astronomy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Parametric design study of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) space telescope'. Together they form a unique fingerprint.

Cite this