Parallel vortex body interaction enabled by active flow control

Andre Weingaertner, Philipp Tewes, Jesse C. Little

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Abstract: An experimental investigation has been conducted to demonstrate the utility of active flow control as a disturbance generator for vortex body interaction studies. The technique is used to explore the flow physics of parallel vortex body interaction between two NACA 0012 airfoils in series. Experiments were carried out at a chord-based Reynolds number of 740,000 relative to the first airfoil. Active flow control in the form of nanosecond pulse-driven dielectric barrier discharge plasma actuation, originating close to the leading edge, was used to produce vortex shedding from the upstream (disturbance) airfoil at various frequencies (0.038 ≤ F+≤ 0.762). These vortices were characterized, showing reduced circulation and diameter with increasing frequency, before examining the downstream wake-airfoil interactions. Time-resolved pressure and phase-locked PIV measurements were taken on the downstream (target) airfoil for multiple angles of attack. For F+≤ 0.5 , the target airfoil is subject to strong oscillations from the wake of the disturbance airfoil that lead to large fluctuations in lift and pitching moment. However, a further increase in F+ reattaches the flow over the disturbance airfoil and no major vortex body interactions are observed on the target. Governing parameters for this type of vortex body interaction are explored, and differences between isolated and non-isolated encounters as well as the presence of a viscous response are examined. Finally, means to alleviate loads caused by the incident vortex are explored. Graphic abstract: [Figure not available: see fulltext.].

Original languageEnglish (US)
Article number137
JournalExperiments in Fluids
Issue number6
StatePublished - Jun 1 2020

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Parallel vortex body interaction enabled by active flow control'. Together they form a unique fingerprint.

Cite this