TY - JOUR
T1 - Paleoproterozoic orogenesis and quartz-arenite deposition in the Little Chino Valley area, Yavapai tectonic province, central Arizona, USA
AU - Spencer, Jon E.
AU - Pecha, Mark E.
AU - Gehrels, George E.
AU - Dickinson, William R.
AU - Domanik, Kenneth J.
AU - Quade, Jay
N1 - Funding Information:
J. Spencer thanks Mike Doe for discussions of Proterozoic geology, Charles Ferguson for comments on an earlier draft, Jay Holberg for discussions regarding stellar evolution, and Beth Nichols Boyd and Diane Love for assistance in the field. We thank Associate Editor Mike Williams, reviewer Jamey Jones, and an anonymous reviewer for thorough reviews that resulted in substantial improvement. U-Pb geochronologic analyses of single zircon grains were done by LA-ICP-MS at the Arizona Laserchron Center at the University of Arizona. LaserChron Center facilities support was provided by National Science Foundation grant EAR-1338583. Field mapping and laboratory studies were supported by the U.S. Geological Survey National Cooperative Geologic Mapping Program under STATEMAP assistance awards 08HQAG0093 and G10AC00428. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for governmental use.
Publisher Copyright:
© 2016 Geological Society of America.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - New field mapping and laboratory studies of Paleoproterozoic rock units around Little Chino Valley in central Arizona clarify the timing of magmatism, deformation, and sedimentation in part of the Yavapai tectonic province and yield new insights into sources of sands and weathering environments. Mafic lavas, calc-silicate rocks, and pelitic and psammitic strata in the Jerome Canyon area west of Little Chino Valley were deposited, deformed, and intruded by the 1736 ± 21 (2σ) Ma Williamson Valley Granodiorite. U-Pb geochronologic analysis of detrital zircons from a sample of psammitic strata yielded a maximum depositional age of ca. 1738 Ma. Approximately 25% of the detrital-zircon grains were derived from a ca. 2480 Ma source, as previously identified in Grand Canyon schist units. Kolmogorov-Smirnov statistical comparison of the Jerome Canyon detrital-zircon analyses with Grand Canyon schist analyses indicates that three of the 12 samples analyzed by Shufeldt et al. (2010) are statistically indistinguishable from the Jerome Canyon sample at the 95% confidence level and supports the concept that the Jerome Canyon sequence and Paleoproterozoic schists in the eastern and western Grand Canyon are part of the same tectonostratigraphic terrane. The Del Rio Quartzite on the northeast side of Little Chino Valley, previously considered an outlier of Mazatzal Quartzite, consists of poorly sorted quartz arenite, pebbly quartz arenite, and conglomerate deposited in a braided-stream environment. Microscope examination of 32 thin sections stained for potassium and calcium failed to identify any feldspar, mica, or mafic silicate grains. Similarly, conglomerate clasts consist entirely of vein quartz and less abundant argillite and jasper. A rock unit interpreted as a paleosol beneath the Del Rio Quartzite contains no surviving minerals except quartz, some of which is embayed and rounded as in corrosive saprolitic soils. U-Pb geochronologic analyses of detrital zircons from the 1400-m-thick Quartzite indicate maximum depositional ages of ca. 1745 Ma for the base and ca. 1737 Ma for the top. The unit is folded but is unaffected by the penetrative deformation and metamorphism that affected other Paleoproterozoic volcanic and sedimentary strata in the area, and it is probably significantly younger. We infer that the physically immature but chemically super-mature Del Rio Quartzite was deposited during a time of extreme weathering during a hot, humid climate with exceptionally high atmospheric CO2 concentrations and associated corrosive rainwater rich in carbonic acid.
AB - New field mapping and laboratory studies of Paleoproterozoic rock units around Little Chino Valley in central Arizona clarify the timing of magmatism, deformation, and sedimentation in part of the Yavapai tectonic province and yield new insights into sources of sands and weathering environments. Mafic lavas, calc-silicate rocks, and pelitic and psammitic strata in the Jerome Canyon area west of Little Chino Valley were deposited, deformed, and intruded by the 1736 ± 21 (2σ) Ma Williamson Valley Granodiorite. U-Pb geochronologic analysis of detrital zircons from a sample of psammitic strata yielded a maximum depositional age of ca. 1738 Ma. Approximately 25% of the detrital-zircon grains were derived from a ca. 2480 Ma source, as previously identified in Grand Canyon schist units. Kolmogorov-Smirnov statistical comparison of the Jerome Canyon detrital-zircon analyses with Grand Canyon schist analyses indicates that three of the 12 samples analyzed by Shufeldt et al. (2010) are statistically indistinguishable from the Jerome Canyon sample at the 95% confidence level and supports the concept that the Jerome Canyon sequence and Paleoproterozoic schists in the eastern and western Grand Canyon are part of the same tectonostratigraphic terrane. The Del Rio Quartzite on the northeast side of Little Chino Valley, previously considered an outlier of Mazatzal Quartzite, consists of poorly sorted quartz arenite, pebbly quartz arenite, and conglomerate deposited in a braided-stream environment. Microscope examination of 32 thin sections stained for potassium and calcium failed to identify any feldspar, mica, or mafic silicate grains. Similarly, conglomerate clasts consist entirely of vein quartz and less abundant argillite and jasper. A rock unit interpreted as a paleosol beneath the Del Rio Quartzite contains no surviving minerals except quartz, some of which is embayed and rounded as in corrosive saprolitic soils. U-Pb geochronologic analyses of detrital zircons from the 1400-m-thick Quartzite indicate maximum depositional ages of ca. 1745 Ma for the base and ca. 1737 Ma for the top. The unit is folded but is unaffected by the penetrative deformation and metamorphism that affected other Paleoproterozoic volcanic and sedimentary strata in the area, and it is probably significantly younger. We infer that the physically immature but chemically super-mature Del Rio Quartzite was deposited during a time of extreme weathering during a hot, humid climate with exceptionally high atmospheric CO2 concentrations and associated corrosive rainwater rich in carbonic acid.
UR - http://www.scopus.com/inward/record.url?scp=85006489144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006489144&partnerID=8YFLogxK
U2 - 10.1130/GES01339.1
DO - 10.1130/GES01339.1
M3 - Article
AN - SCOPUS:85006489144
SN - 1553-040X
VL - 12
SP - 1774
EP - 1794
JO - Geosphere
JF - Geosphere
IS - 6
ER -