Painleve property and multicomponent isospectral deformation equations

D. V. Chudnovsky, G. V. Chudnovsky, M. Tabor

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

The Painlevé property for partial differential equations proposed by Weiss, Tabor and Carnevale is studied for two- and three-dimensional multicomponent and matrix isospectral deformation systems. Applications to pole dynamics are presented.

Original languageEnglish (US)
Pages (from-to)268-274
Number of pages7
JournalPhysics Letters A
Volume97
Issue number7
DOIs
StatePublished - Sep 12 1983
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Painleve property and multicomponent isospectral deformation equations'. Together they form a unique fingerprint.

Cite this