Abstract
We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson-002 (anomalous CK3) and Asuka (A)-881595 (ungrouped C3). Magnetite in Watson-002 occurs as inclusion-free subhedral grains and rounded inclusion-bearing porous grains replacing Fe,Ni-metal. In A-881595, magnetite is almost entirely inclusion-free and coexists with Ni-rich sulfide and less abundant Ni-poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of Δ17O values (from approximately -3 to -6‰). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A-881595 plot along a mass-dependent fractionation line with a slope of 0.5 and show a range of Δ17O values from -2.4‰ to -1.1‰. Oxygen isotope compositions of magnetite in Watson-002 cluster near the CCAM line and a Δ17O value of -4.0‰ to -2.9‰. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre-existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in Δ17O values of magnetite between Watson-002 and A-881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.
Original language | English (US) |
---|---|
Pages (from-to) | 1456-1474 |
Number of pages | 19 |
Journal | Meteoritics and Planetary Science |
Volume | 49 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2014 |
ASJC Scopus subject areas
- Geophysics
- Space and Planetary Science