Abstract
The room temperature surface oxidation of evaporated titanium thin films was investigated by a quartz crystal microbalance and Auger electron spectroscopy. The initial oxidation reaction was characterized by a linear oxygen adsorption rate and the formation of a TiO2/Ti2O3 layer and ends when ca. three monolayers of oxygen have been adsorbed. Continued oxidation occurs at a logarithmic rate, and predominantly TiO2 is formed. The rate of oxygen adsorption and the limiting oxide thickness were dependent on the constant field growth mechanism proposed by Fehlner and Mott (1970). The results of these studies are used as controls in the investigation of the electrochemical oxidation of titanium—the subject of the following paper in this issue.
Original language | English (US) |
---|---|
Pages (from-to) | 30-36 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - 1986 |
Externally published | Yes |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry