Oxidative stress-induced insulin resistance in rat skeletal muscle: Role of glycogen synthase kinase-3

Betsy B. Dokken, Vitoon Saengsirisuwan, John S. Kim, Mary K. Teachey, Erik J. Henriksen

Research output: Contribution to journalArticlepeer-review

98 Scopus citations

Abstract

Oxidative stress can contribute to the multifactorial etiology of whole body and skeletal muscle insulin resistance. No investigation has directly assessed the effect of an in vitro oxidant stress on insulin action in intact mammalian skeletal muscle. Therefore, the purpose of the present study was to characterize the molecular actions of a low-grade oxidant stress (H 2O2) on insulin signaling and glucose transport in isolated skeletal muscle of lean Zucker rats. Soleus strips were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase, which produces H2O2 at ∼90 μM. By itself, H 2O2 significantly (P < 0.05) activated basal glucose transport activity, net glycogen synthesis, and glycogen synthase activity and increased phosphorylation of insulin receptor (Tyr), Akt (Ser473), and GSK-3β (Ser9). In contrast, this oxidant stress significantly inhibited the expected insulin-mediated enhancements in glucose transport, glycogen synthesis, and these signaling factors and allowed GSK-3β to retain a more active form. In the presence of CT-98014, a selective GSK-3 inhibitor, the ability of insulin to stimulate glucose transport and glycogen synthesis during exposure to this oxidant stress was enhanced by 20% and 39% (P < 0.05), respectively, and insulin stimulation of the phosphorylation of insulin receptor, Akt, and GSK-3 was significantly increased by 36-58% (P < 0.05). These results indicate that an oxidant stress can directly and rapidly induce substantial insulin resistance of skeletal muscle insulin signaling, glucose transport, and glycogen synthesis. Moreover, a small, but significant, portion of this oxidative stress-induced insulin resistance is associated with a reduced insulin-mediated suppression of the active form of GSK-3β.

Original languageEnglish (US)
Pages (from-to)E615-E621
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume294
Issue number3
DOIs
StatePublished - Mar 2008

Keywords

  • Glucose transport
  • Hydrogen peroxide
  • Type 2 diabetes

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Oxidative stress-induced insulin resistance in rat skeletal muscle: Role of glycogen synthase kinase-3'. Together they form a unique fingerprint.

Cite this