Abstract
Polycyclic aromatic hydrocarbons (PAH) are persistent priority pollutants of soil and sediments. The use of white-rot fungi has been proposed as a means of bioremediating PAH-polluted sites. However, higher PAH compounds of low bioavailability in polluted soil are biodegraded slowly. In order to enhance their bioavailability, PAH solubilization, can be increased in water/solvent mixtures. The oxidation of a model PAH compound, anthracene, in the presence of cosolvents by the white-rot fungus, Bjerkandera sp. strain BOS55 was investigated. Acetone and ethanol at 5% were toxic to this fungus when added at the time of inoculation. However, when solvents up to 20% (v/v) were added to 9-day-old cultures, ligninolytic activity as indicated by Poly R-478 dye decolorization and anthracene oxidation was evident for several days. Since 20% solvent was toxic to cells, the oxidation of anthracene can be attributed to extracellular peroxidases, which were shown to tolerate the solvent. Solvent additions of 11%-21% (v/v) acetone or ethanol increased the rate of anthracene bioconversion to anthraquinone in liquid medium by a factor of 2-3 compared to fungal cultures receiving 1%-3% solvent.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 234-240 |
| Number of pages | 7 |
| Journal | Applied Microbiology and Biotechnology |
| Volume | 44 |
| Issue number | 1-2 |
| DOIs | |
| State | Published - Dec 1995 |
| Externally published | Yes |
ASJC Scopus subject areas
- Biotechnology
- Applied Microbiology and Biotechnology