Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation

Edward Cantu, Rupal J. Shah, Wei Lin, Zhongyin J. Daye, Joshua M. Diamond, Yoshikazu Suzuki, John H. Ellis, Catherine F. Borders, Gerald A. Andah, Ben Beduhn, Nuala J. Meyer, Melanie Ruschefski, Richard Aplenc, Rui Feng, Jason D. Christie

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Objective Oxidant stress pathway activation during ischemia reperfusion injury may contribute to the development of primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidant stress gene variation in recipients and donors is associated with PGD. Methods Donors and recipients from the Lung Transplant Outcomes Group (LTOG) cohort were genotyped using the Illumina IBC chip filtered for oxidant stress pathway genes. Single nucleotide polymorphisms (SNPs) grouped into SNP sets based on haplotype blocks within 49 oxidant stress genes selected from gene ontology pathways and literature review were tested for PGD association using a sequencing kernel association test. Analyses were adjusted for clinical confounding variables and population stratification. Results Three hundred ninety-two donors and 1038 recipients met genetic quality control standards. Thirty percent of patients developed grade 3 PGD within 72 hours. Donor NADPH oxidase 3 (NOX3) was associated with PGD (P =.01) with 5 individual significant loci (P values between.006 and.03). In recipients, variation in glutathione peroxidase (GPX1) and NRF-2 (NFE2L2) was significantly associated with PGD (P =.01 for both). The GPX1 association included 3 individual loci (P values between.006 and.049) and the NFE2L2 association included 2 loci (P =.03 and.05). Significant epistatic effects influencing PGD susceptibility were evident between 3 different donor blocks of NOX3 and recipient NFE2L2 (P =.026, P =.017, and P =.031). Conclusions Our study has prioritized GPX1, NOX3, and NFE2L2 genes for future research in PGD pathogenesis, and highlights a donor-recipient interaction of NOX3 and NFE2L2 that increases the risk of PGD.

Original languageEnglish (US)
Pages (from-to)596-602.e3
JournalJournal of Thoracic and Cardiovascular Surgery
Issue number2
StatePublished - Feb 1 2015

ASJC Scopus subject areas

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation'. Together they form a unique fingerprint.

Cite this