Overview of LBTI: A multipurpose facility for high spatial resolution observations

P. M. Hinz, D. Defrère, A. Skemer, V. Bailey, J. Stone, E. Spalding, A. Vaz, E. Pinna, A. Puglisi, S. Esposito, M. Montoya, E. Downey, J. Leisenring, O. Durney, W. Hoffmann, J. Hill, R. Millan-Gabet, B. Mennesson, W. Danchi, K. MorzinskiP. Grenz, M. Skrutskie, S. Ertel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

53 Scopus citations


The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2×8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-Azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 μm camera (called LMIRCam), and an 8-13 μm camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20x20); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.

Original languageEnglish (US)
Title of host publicationOptical and Infrared Interferometry and Imaging V
EditorsMichelle J. Creech-Eakman, Fabien Malbet, Peter G. Tuthill
ISBN (Electronic)9781510601932
StatePublished - 2016
EventOptical and Infrared Interferometry and Imaging V - Edinburgh, United Kingdom
Duration: Jun 27 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherOptical and Infrared Interferometry and Imaging V
Country/TerritoryUnited Kingdom


  • Adaptive Optics
  • Imaging
  • Infrared Instruments
  • Interferometry

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Overview of LBTI: A multipurpose facility for high spatial resolution observations'. Together they form a unique fingerprint.

Cite this