Origin of photoelastic phenomena in Ge-Se network glasses

Lizhu Li, Amey R. Khanolkar, Julien Ari, Pierre Deymier, Pierre Lucas

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


The elastic properties of a series of Ge-Se glasses are measured during irradiation with sub-band-gap light using a laser-induced transient grating method. The elastic modulus is found to decrease prominently with increasing irradiation intensity. The process is found to be less prominent in glasses of high average coordination (r). Measured kinetics in the millisecond range are found to be too slow for a photoinduced electronic process and instead suggest a thermal origin. Infrared thermography is performed during irradiation to monitor temperature changes during photodarkening, photoexpansion, and photoelastic measurements. It is found that in the conditions of irradiation where photoelasticity is observed, all photostructural changes are directly associated with a change in temperature. comsol modeling of thermal flow through the sample closely reproduces the kinetics of photodarkening. Transient grating measurements as a function of temperature confirm that the change in elasticity during irradiation is essentially a thermally induced process. Currently available experimental evidence indicates that the photoelastic phenomena are not an optoelectronic process but rather the result of laser heating.

Original languageEnglish (US)
Article number214209
JournalPhysical Review B
Issue number21
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Origin of photoelastic phenomena in Ge-Se network glasses'. Together they form a unique fingerprint.

Cite this